Skip to main content
Log in

On the Generation of Hydrodynamic Shocks by Mixed Beams and Occurrence of Sunquakes in Flares

  • Probing the Sun: Inside and Out
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Observations of solar flares with sunquakes by space- and ground-based instruments reveal essentially different dynamics of seismic events in different flares. Some sunquakes are found to be closely associated with the locations of hard X-ray (HXR) and white-light (WL) emission, while others are located outside either of them. In this article we investigate possible sources causing a seismic response in a form of hydrodynamic shocks produced by the injection of mixed (electron plus proton) beams, discuss the velocities of these shocks, and the depths where they deposit the bulk of their energy and momentum. The simulation of hydrodynamic shocks in flaring atmospheres induced by electron-rich and proton-rich beams reveals that the linear depth of the shock termination is shifted beneath the level of the quiet solar photosphere on a distance from 200 to 5000 km. The parameters of these atmospheric hydrodynamic shocks are used as initial condition for another hydrodynamic model developed for acoustic-wave propagation in the solar interior (Zharkov, Mon. Not. Roy. Astron. Soc. 431, 3414, 2013). The model reveals that the depth of energy and momentum deposition by the atmospheric shocks strongly affects the propagation velocity of the acoustic-wave packet in the interior. The locations of the first bounces from the photosphere of acoustic waves generated in the vicinity of a flare are seen as ripples on the solar surface, or sunquakes. Mixed proton-dominated beams are found to produce a strong supersonic shock at depths 200 – 300 km under the level of the quiet-Sun photosphere and in this way produce well-observable acoustic waves, while electron-dominated beams create a slightly supersonic shock propagating down to 5000 km under the photosphere. This shock can only generate acoustic waves at the top layers beneath the photosphere since the shock velocity very quickly drops below the local sound speed. The distance \(\Delta\) of the first bounce of the generated acoustic waves is discussed in relation to the minimal phase velocities of wave packets defined by the acoustic cutoff frequency and the parameters of atmospheric shock termination beneath the photosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Allred, J.C., Hawley, S.L., Abbett, W.P., Carlsson, M.: 2005, Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. Astrophys. J. 630, 573. DOI . ADS .

    Article  ADS  Google Scholar 

  • Alvarado-Gómez, J.D., Buitrago-Casas, J.C., Martínez-Oliveros, J.C., Lindsey, C., Hudson, H., Calvo-Mozo, B.: 2012, Magneto-acoustic energetics study of the seismically active flare of 15 February 2011. Solar Phys. 280, 335. DOI . ADS .

    Article  ADS  Google Scholar 

  • Brown, J.C., Craig, I.J.D.: 1984, The importance of particle beam momentum in beam-heated models of solar flares. Astron. Astrophys. 130, L5. ADS .

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Dappen, W., Ajukov, S.V., Anderson, E.R., Antia, H.M., Basu, S., Baturin, V.A., Berthomieu, G., Chaboyer, B., Chitre, S.M., Cox, A.N., Demarque, P., Donatowicz, J., Dziembowski, W.A., Gabriel, M., Gough, D.O., Guenther, D.B., Guzik, J.A., Harvey, J.W., Hill, F., Houdek, G., Iglesias, C.A., Kosovichev, A.G., Leibacher, J.W., Morel, P., Proffitt, C.R., Provost, J., Reiter, J., Rhodes, E.J. Jr., Rogers, F.J., Roxburgh, I.W., Thompson, M.J., Ulrich, R.K.: 1996, The current state of solar modeling. Science 272, 1286. DOI . ADS .

    Article  ADS  Google Scholar 

  • Donea, A.: 2011, Seismic transients from flares in solar cycle 23. Space Sci. Rev. 158, 451. DOI . ADS .

    Article  ADS  Google Scholar 

  • Donea, A., Braun, D.C., Lindsey, C.: 1999, Seismic images of a solar flare. Astrophys. J. Lett. 513, L143. DOI . ADS .

    Article  ADS  Google Scholar 

  • Donea, A., Lindsey, C.: 2005, Seismic emission from the solar flares of 2003 October 28 and 29. Astrophys. J. 630, 1168. DOI . ADS .

    Article  ADS  Google Scholar 

  • Donea, A., Besliu-Ionescu, D., Cally, P.S., Lindsey, C., Zharkova, V.V.: 2006, Seismic emission from a M9.5-class solar flare. Solar Phys. 239, 113. DOI . ADS .

    Article  ADS  Google Scholar 

  • Edelman, F., Hill, F., Howe, R., Komm, R.: 2004, The effect of spectral line shape changes on GONG observations of oscillations and flares. In: Danesy, D. (ed.) SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, ESA Special Publication 559, 416. ADS .

    Google Scholar 

  • Emslie, A.G.: 1978, The collisional interaction of a beam of charged particles with a hydrogen target of arbitrary ionization level. Astrophys. J. 224, 241. DOI . ADS .

    Article  ADS  Google Scholar 

  • Emslie, A.G.: 1980, The effect of reverse currents on the dynamics of nonthermal electron beams in solar flares and on their emitted X-ray bremsstrahlung. Astrophys. J. 235, 1055. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fisher, G.H.: 1989, Dynamics of flare-driven chromospheric condensations. Astrophys. J. 346, 1019. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fisher, G.H., Canfield, R.C., McClymont, A.N.: 1985a, Flare loop radiative hydrodynamics—Part seven—Dynamics of the thick target heated chromosphere. Astrophys. J. 289, 434. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fisher, G.H., Canfield, R.C., McClymont, A.N.: 1985b, Flare loop radiative hydrodynamics—Part six—chromospheric evaporation due to heating by nonthermal electrons. Astrophys. J. 289, 425. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fisher, G.H., Canfield, R.C., McClymont, A.N.: 1985c, Flare loop radiative hydrodynamics. V—Response to thick-target heating. VI—Chromospheric evaporation due to heating by nonthermal electrons. VII—Dynamics of the thick-target heated chromosphere. Astrophys. J. 289, 414. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fisher, G.H., Bercik, D.J., Welsch, B.T., Hudson, H.S.: 2012, Global forces in eruptive solar flares: The Lorentz force acting on the solar atmosphere and the solar interior. Solar Phys. 277, 59. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gordovskyy, M., Zharkova, V.V., Voitenko, Y.M., Goossens, M.: 2005, Proton versus electron heating in solar flares. Adv. Space Res. 35, 1743. DOI . ADS .

    Article  ADS  Google Scholar 

  • Holman, G.D., Sui, L., Schwartz, R.A., Emslie, A.G.: 2003, Electron bremsstrahlung hard X-ray spectra, electron distributions, and energetics in the 2002 July 23 solar flare. Astrophys. J. Lett. 595, L97. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hudson, H.S.: 1972, Thick-target processes and white-light flares. Solar Phys. 24, 414. DOI . ADS .

    Article  ADS  MathSciNet  Google Scholar 

  • Hudson, H.S., Fisher, G.H., Welsch, B.T.: 2008, Flare energy and magnetic field variations. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity, Astron. Soc. Pacific Conf. Ser. 383, 221. ADS .

    Google Scholar 

  • Kitiashvili, I.N., Kosovichev, A.G., Mansour, N.N., Wray, A.A.: 2011, Excitation of acoustic waves by vortices in the quiet sun. Astrophys. J. Lett. 727, L50. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kobylinskii, V.A., Zharkova, V.V.: 1996, Hydrogen H-alpha line emissions and radiative losses in the impulsive solar events. Adv. Space Res. 17, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kosovichev, A.G.: 2006, Properties of flares-generated seismic waves on the sun. Solar Phys. 238, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kosovichev, A.G.: 2007, The cause of photospheric and helioseismic responses to solar flares: High-energy electrons or protons? Astrophys. J. Lett. 670, L65. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kosovichev, A.G., Zharkova, V.V.: 1995, Seismic response to solar flares: Theoretical predictions. In: Helioseismology, ESA SP-376, 341. ADS .

    Google Scholar 

  • Kosovichev, A.G., Zharkova, V.V.: 1998, X-ray flare sparks quake inside Sun. Nature 393, 317. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kosovichev, A.G., Zharkova, V.V.: 1999, Variations of photospheric magnetic field associated with flares and CMEs. Solar Phys. 190, 459. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kosovichev, A.G., Zharkova, V.V.: 2001, Magnetic energy release and transients in the solar flare of 2000 July 14. Astrophys. J. Lett. 550, L105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lindsey, C., Braun, D.C.: 1997, Helioseismic holography. Astrophys. J. 485, 895. ADS .

    Article  ADS  Google Scholar 

  • Lindsey, C., Braun, D.C.: 2000, Basic principles of solar acoustic holography (invited review). Solar Phys. 192, 261. ADS .

    Article  ADS  Google Scholar 

  • Lindsey, C., Donea, A.: 2008, Mechanics of seismic emission from solar flares. Solar Phys. 251, 627. DOI . ADS .

    Article  ADS  Google Scholar 

  • Litvinenko, Y.E.: 1996, Particle acceleration in reconnecting current sheets with a nonzero magnetic field. Astrophys. J. 462, 997. DOI . ADS .

    Article  ADS  Google Scholar 

  • Machado, M.E., Emslie, A.G., Avrett, E.H.: 1989, Radiative backwarming in white-light flares. Solar Phys. 124, 303. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martínez-Oliveros, J.C., Donea, A.-C.: 2009, Magnetic field variations and seismicity of solar active regions. Mon. Not. Roy. Astron. Soc. 395, L39. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martínez-Oliveros, J.C., Moradi, H., Donea, A.: 2008, Seismic emissions from a highly impulsive M6.7 solar flare. Solar Phys. 251, 613. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martínez-Oliveros, J.-C., Hudson, H.S., Hurford, G.J., Krucker, S., Lin, R.P., Lindsey, C., Couvidat, S., Schou, J., Thompson, W.T.: 2012, The height of a white-light flare and its hard X-ray sources. Astrophys. J. Lett. 753, L26. DOI . ADS .

    Article  ADS  Google Scholar 

  • Matthews, S.A., Zharkov, S., Zharkova, V.V.: 2011, Anatomy of a solar flare: Measurements of the 2006 December 14 X-class flare with GONG, Hinode, and RHESSI. Astrophys. J. 739, 71. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mauas, P.J.D., Gómez, D.O.: 1997, Fokker–Planck description of electron beams in the solar chromosphere. Astrophys. J. 483, 496. ADS .

    Article  ADS  Google Scholar 

  • Metcalf, T.R., Alexander, D., Hudson, H.S., Longcope, D.W.: 2003, TRACE and Yohkoh observations of a white-light flare. Astrophys. J. 595, 483. DOI . ADS .

    Article  ADS  Google Scholar 

  • Moll, R., Cameron, R.H., Schüssler, M.: 2011, Vortices in simulations of solar surface convection. Astron. Astrophys. 533, A126. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Nagai, F., Emslie, A.G.: 1984, Gas dynamics in the impulsive phase of solar flares. I Thick-target heating by nonthermal electrons. Astrophys. J. 279, 896. DOI . ADS .

    Article  ADS  Google Scholar 

  • Norton, A.A., Graham, J.P., Ulrich, R.K., Schou, J., Tomczyk, S., Liu, Y., Lites, B.W., López Ariste, A., Bush, R.I., Socas-Navarro, H., Scherrer, P.H.: 2006, Spectral line selection for HMI: A comparison of Fe I 6173 Å and Ni I 6768 Å. Solar Phys. 239, 69. DOI . ADS .

    Article  ADS  Google Scholar 

  • Patterson, A., Zirin, H.: 1981, Astrophys. Lett. 243, L99. DOI . ADS

    Article  ADS  Google Scholar 

  • Petrie, G.J.D.: 2012, The abrupt changes in the photospheric magnetic and Lorentz force vectors during six major neutral-line flares. Astrophys. J. 759, 50. DOI . ADS .

    Article  ADS  Google Scholar 

  • Petrie, G.J.D.: 2013, A spatio-temporal description of the abrupt changes in the photospheric magnetic and Lorentz-force vectors during the 15 February 2011 X2.2 flare. Solar Phys. 287, 415. DOI . ADS .

    Article  ADS  Google Scholar 

  • Petrie, G.J.D., Sudol, J.J.: 2010, Abrupt longitudinal magnetic field changes in flaring active regions. Astrophys. J. 724, 1218. DOI . ADS .

    Article  ADS  Google Scholar 

  • Priest, E.R., Forbes, T.G.: 2002, The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313. DOI . ADS .

    Article  ADS  Google Scholar 

  • Qiu, J., Gary, D.E.: 2003, Flare-related magnetic anomaly with a sign reversal. Astrophys. J. 599, 615. DOI . ADS .

    Article  ADS  Google Scholar 

  • Siversky, T.V., Zharkova, V.V.: 2009a, Particle acceleration in a reconnecting current sheet: PIC simulation. J. Plasma Phys. 75, 619. DOI . ADS .

    Article  ADS  Google Scholar 

  • Siversky, T.V., Zharkova, V.V.: 2009b, Stationary and impulsive injection of electron beams in converging magnetic field. Astron. Astrophys. 504, 1057. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Somov, B.V. (ed.): 2000, Cosmic Plasma Physics, Astrophys. Space Scien. Lib. 251. ADS .

    Google Scholar 

  • Somov, B.V., Spektor, A.R., Syrovatskii, S.I.: 1981, Hydrodynamic response of the solar chromosphere to an elementary flare burst. I—Heating by accelerated electrons. Solar Phys. 73, 145. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sudol, J.J., Harvey, J.W.: 2005, Longitudinal magnetic field changes accompanying solar flares. Astrophys. J. 635, 647. DOI . ADS .

    Article  ADS  Google Scholar 

  • Syrovatskii, S.I., Shmeleva, O.P.: 1972, Heating of plasma by high-energy electrons, and nonthermal X-ray emission in solar flares. Soviet Astron. 16, 273. ADS .

    ADS  Google Scholar 

  • van den Oord, G.H.J.: 1990, The electrodynamics of beam/return current systems in the solar corona. Astron. Astrophys. 234, 496. ADS .

    ADS  MATH  Google Scholar 

  • Vernazza, J.E., Avrett, E.H., Loeser, R.: 1981, Structure of the solar chromosphere. III—Models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. 45, 635. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, S., Liu, C., Liu, R., Deng, N., Liu, Y., Wang, H.: 2012, Response of the photospheric magnetic field to the X2.2 flare on 2011 February 15. Astrophys. J. Lett. 745, L17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Warmuth, A., Mann, G.: 2011, Kinematical evidence for physically different classes of large-scale coronal EUV waves. Astron. Astrophys. 532, A151. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wolff, C.L.: 1972, Free oscillations of the sun and their possible stimulation by solar flares. Astrophys. J. 176, 833. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zarro, D.M., Slater, G.L., Freeland, S.L.: 1988, Impulsive phase soft X-ray blueshifts at a loop footpoint. Astrophys. J. Lett. 333, L99. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zarro, D.M., Canfield, R.C., Metcalf, T.R., Strong, K.T.: 1988, Explosive plasma flows in a solar flare. Astrophys. J. 324, 582. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkov, S.: 2013, Geometric properties of acoustic waves generated by a point source in the solar-like interior: Effects of acoustic cutoff frequency. Mon. Not. Roy. Astron. Soc. 431, 3414. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkov, S., Zharkova, V.V., Matthews, S.A.: 2011, Comparison of seismic signatures of flares obtained by SOHO/Michelson Doppler Imager and GONG instruments. Astrophys. J. 739, 70. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkov, S., Green, L.M., Matthews, S.A., Zharkova, V.V.: 2011, 2011 February 15: Sunquakes produced by flux rope eruption. Astrophys. J. Lett. 741, L35. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkov, S., Green, L.M., Matthews, S.A., Zharkova, V.V.: 2013, Properties of the 15 February 2011 flare seismic sources. Solar Phys. 284, 315. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkova, V.V.: 2008, The mechanisms of particle kinetics and dynamics leading to seismic emission and sunquakes. Solar Phys. 251, 641. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Agapitov, O.V.: 2009, The effect of magnetic topology on particle acceleration in a three-dimensional reconnecting current sheet: A test-particle approach. J. Plasma Phys. 75, 159. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Gordovskyy, M.: 2004, Particle acceleration asymmetry in a reconnecting nonneutral current sheet. Astrophys. J. 604, 884. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Gordovskyy, M.: 2005, Energy spectra of particles accelerated in a reconnecting current sheet with the guiding magnetic field. Mon. Not. Roy. Astron. Soc. 356, 1107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Gordovskyy, M.: 2006, The effect of the electric field induced by precipitating electron beams on hard X-ray photon and mean electron spectra. Astrophys. J. 651, 553. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Khabarova, O.V.: 2012, Particle dynamics in the reconnecting heliospheric current sheet: Solar wind data versus three-dimensional particle-in-cell simulations. Astrophys. J. 752, 35. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Kobylinskii, V.A.: 1993, The effect of non-thermal excitation and ionization on the hydrogen emission in impulsive solar flares. Solar Phys. 143, 259. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Kosovichev, A.G.: 2000, Helioseismic waves and magnetic field variations induced by solar flares as probes of energy transport mechanisms. In: Ramaty, R., Mandzhavidze, N. (eds.) High Energy Solar Physics Workshop—Anticipating Hess! Astron. Soc. Pacific C.S. 206, 77. ADS .

    Google Scholar 

  • Zharkova, V.V., Kosovichev, A.G.: 2002, A new insight into the energy release and transport in solar flares. In: Sawaya-Lacoste, H. (ed.) Solspa 2001, Proceedings of the Second Solar Cycle and Space Weather Euroconference, ESA SP-477, 35. ADS .

    Google Scholar 

  • Zharkova, V.V., Siversky, T.: 2011, Formation of electron clouds during particle acceleration in a 3D current sheet. In: Bonanno, A., de Gouveia Dal Pino, E., Kosovichev, A.G. (eds.) IAU Symposium, IAU Symposium 274, 453. DOI . ADS .

    Google Scholar 

  • Zharkova, V.V., Zharkov, S.I.: 2007, On the origin of three seismic sources in the proton-rich flare of 2003 October 28. Astrophys. J. 664, 573. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Zharkov, S.I., Ipson, S.S., Benkhalil, A.K.: 2005, Toward magnetic field dissipation during the 23 July 2002 solar flare measured with Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). J. Geophys. Res. 110, 8104. DOI . ADS .

    Article  Google Scholar 

  • Zharkova, V.V., Arzner, K., Benz, A.O., Browning, P., Dauphin, C., Emslie, A.G., Fletcher, L., Kontar, E.P., Mann, G., Onofri, M., Petrosian, V., Turkmani, R., Vilmer, N., Vlahos, L.: 2011a, Recent advances in understanding particle acceleration processes in solar flares. Space Sci. Rev. 159, 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Kashapova, L.K., Chornogor, S.N., Andrienko, O.V.: 2011b, The effect of energetic particle beams on the chromospheric emission of the 2004 July 25 flare. Mon. Not. Roy. Astron. Soc. 411, 1562. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deepest gratitude to the Leverhulme Trust for supporting the Workshop at the Mullar Space Science Laboratory, UCL, in September 2013, where the key questions of sunquake origins were discussed and where this article was initiated. The authors also wish to thank the anonymous referee for very useful comments from which the paper strongly benefited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Zharkova.

Ethics declarations

Declaration of Conflict of Interests

The authors declare that they have no conflicts of interest.

Additional information

Probing the Sun: Inside and Out

Guest Editors: D. Baker, L.K. Harra, and R. Howe

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zharkova, V., Zharkov, S. On the Generation of Hydrodynamic Shocks by Mixed Beams and Occurrence of Sunquakes in Flares. Sol Phys 290, 3163–3188 (2015). https://doi.org/10.1007/s11207-015-0813-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0813-x

Keywords

Navigation