Skip to main content

Advertisement

Log in

An Interpretation of a Possible Mechanism for the First Ground-Level Enhancement of Solar Cycle 24

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

It is well known that solar flares and shocks driven by coronal mass ejections (CMEs) are high-energy particle acceleration processes that might cause a high-energy particle event known as a ground-level enhancement (GLE). In this context, we have attempted to understand the processes responsible for the first GLE event (GLE71 17 May 2012 01:50 UT) of Solar Cycle 24. We studied the spatial and spectral data from the Solar Dynamics Observatory (SDO) the Culgoora radio-heliograph, and Wind/WAVES instrument, and analyzed the temporal data of the solar-flare components, the solar radio-flux density, and the electron fluxes from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), the Geostationary Operational Environmental Satellite (GOES), the Radio Solar Telescope Network (RSTN), and Wind spacecraft. The flare had two ribbons separated by the neutral line between negative and positive magnetic polarity. Their structure was also almost consistent with the contours of some flare components, which were almost saturated during the flare-peak time. As indicated by the metric–kilometric Type-II burst, and because it extended over a wide heliolongitude (> ≈ 41) range, the CME-driven shock was fast enough to cause high-energy particle acceleration at a high altitude in the solar corona. Moreover, the CME and flare-flash phases were aligned along the same direction, which implies that if the CME-driven shock played the leading role in causing the GLE, preceding flare components may have contributed to the shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aggarwal, M., Jain, R., Mishra, A.P., Kulkarni, P.G., Vyas, C., Sahrma, R., Gupta, M.: 2008, J. Astrophys. Astron. 29, 195.

    Article  ADS  Google Scholar 

  • Andriopoulou, M., Mavromichalaki, H., Preka-Papadema, P., Plainaki, C., Belov, A., Eroshenko, E.: 2011, Astrophys. Space Sci. Trans. 7, 439.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 2006, Space Sci. Rev. 124, 361.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 2012, Space Sci. Rev. 171, 3.

    Article  ADS  Google Scholar 

  • Baisultanova, L.M., Belov, A.V., Dorman, L.I., Eroshenko, E.A., Gushchina, R.T., Ishkov, V.N., Yanke, V.G.: 1991, In: Cawley, M., Drury, L.OC., Fegan, D.J., O’Sullivan, D., Porter, N.A., Quenby, J.J., Watson, A.A. (eds.) Int’l. Cosmic Ray. Conf., Dublin 3, 105.

    Google Scholar 

  • Belov, A.V., Blokh, Y.L., Eroshenko, E.A., Ishkov, V.N.: 1985, In: Jones, F.C., Adams, J., Mason, G.M. (eds.) 19th Int’l. Cosmic Ray Conf., SH 1.3 – 15, 118. archive.org/stream/nasa_techdoc_19850027753/19850027753_djvu.txt .

  • Bieber, J.W., Clem, J.M., Duldig, M.L., Evenson, P.A., Humble, J.E., Pyle, R.: 2004, J. Geophys. Res. 109, A12. DOI .

    Google Scholar 

  • Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Space Sci. Rev. 71, 231.

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., von Rosenvinge, T.T.: 2007, Space Sci. Rev. 130, 301.

    Article  ADS  Google Scholar 

  • Chen, P.F.: 2008, J. Astrophys. Astron. 29, 179.

    Article  ADS  Google Scholar 

  • Chernov, G.P., Kaiser, M.L., Bougeret, J.-L., Fomichev, V.V., Gorgutsa, R.V.: 2007, Solar Phys. 241, 145. ADS . DOI .

    Article  ADS  Google Scholar 

  • Cramp, J.L., Duldig, M.L., Humble, J.E.: 1995, In: Iucci, N., Lamanna, E. (eds.) Int’l. Cosmic Ray. Conf. 4, 289.

    Google Scholar 

  • Cramp, J.L., Duldig, M.L., Humble, J.E.: 1997, J. Geophys. Res. 102, 4919.

    Article  ADS  Google Scholar 

  • Deeley, K.M., Duldig, M.L., Humble, J.E.: 2002, Adv. Space Res. 30, 1049.

    Article  ADS  Google Scholar 

  • Dennis, B.R.: 2002, Bull. Am. Astron. Soc. 34, 76.03.

    Google Scholar 

  • Dennis, B.R., Pernak, R.L.: 2009, Astrophys. J. 698, 2131.

    Article  ADS  Google Scholar 

  • Dorman, L.I., Belov, A.V., Eroshenko, E.A., Gushchina, R.T., Iucci, N., Mavromichalaki, H., Parisi, M., et al.: 2001 In: Proc. of 27th Int’l Cosmic Ray Conf., Hamburg, 3469.

    Google Scholar 

  • Dorotovič, I., Kudela, K., Lorenc, M., Rybanský, M.: 2008, Solar Phys. 250, 339. ADS . DOI .

    Article  ADS  Google Scholar 

  • Duldig, M.L., Humble, J.E.: 1999, In: Kieda, D., Salamon, M., Dingus, B. (eds.) Proc. 26th Int’l. Cosmic Ray Conf., Utah, USA 6, 403. ADS .

    Google Scholar 

  • Firoz, K.A., Cho, K.-S., Hwang, J., Kumar, P.D.V., Lee, J.J., Oh, S.Y., Kaushik, S.C., Kudela, K., Milan, R., Dorman, L.I.: 2010, J. Geophys. Res. 115, A09105. DOI .

    ADS  Google Scholar 

  • Firoz, K.A., Moon, Y.-J., Park, S.H., Kudela, K., Islam, J.N., Dorman, L.I.: 2011, Astrophys. J. 743, 190.

    Article  ADS  Google Scholar 

  • Firoz, K.A., Gan, W.Q., Moon, Y.J., Li, C.: 2012, Astrophys. J. 758, 119.

    Article  ADS  Google Scholar 

  • Firoz, K.A., Gan, W.Q., Li, Y.P., Rodríguez-Pacheco, J.: 2014a, Geophys. Res. Abstr. 16, EGU2014-1920, EGU General Assembly 2014.

    Google Scholar 

  • Firoz, K.A., Gan, W.Q., Li, Y.P., Rodríguez-Pacheco, J.: 2014b, Astrophys. Space Sci. 350, 21. DOI . ISSN 0004-640X.

    Article  ADS  Google Scholar 

  • Flückiger, E.O.: 2009, In: Caballero, R., D’Olivo, J.C., Medina-Tanco, G., Valdes-Galicia, J.F. (eds.) Proc. 30th Int’l. Cosmic Ray Conf. 6, 239.

    Google Scholar 

  • Gómez-Herrero, R., Rodríguez Frias, M.D., del Peral, L., Sequeiros, J., Müller-Mellin, R., Kunow, H.: 2000, In: Wilson, A. (ed.) Proc. 1st Solar & Space Weather Euroconference: The Solar Cycle and Terrestrial Climate SP-463, ESA, Noordwijk, 325.

    Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Kaiser, M.L., Howard, R.A., Reames, D.V., Leske, R., von Rosenvinge, T.: 2002, Astrophys. J. 572, L103.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Akiyama, S., Yashiro, S., Usoskin, I.G., Davila, J.M.: 2013, Astrophys. J. Lett. 765, L30.

    Article  ADS  Google Scholar 

  • Hock, R.A., Chamberlin, P.C., Woods, T.N., Crotser, D., Eparvier, F.G., Woodraska, D.L., Woods, E.C.: 2012, Solar Phys. 275, 145. ADS . DOI .

    Article  ADS  Google Scholar 

  • Holman, G.D., Aschwanden, M.J., Aurass, H., Battaglia, M., Grigis, P.C., Kontar, E.P., Liu, W., Saint-Hilaire, P., Zharkova, V.V.: 2011, Space Sci. Rev. 159, 107. DOI .

    Article  ADS  Google Scholar 

  • Kahler, S.W.: 1994, Astrophys. J. 428, 837.

    Article  ADS  Google Scholar 

  • Kallenrode, M.-B.: 1993, J. Geophys. Res. 98(A11), 19037.

    Article  ADS  Google Scholar 

  • Kocharov, L., Torsti, J.: 2002, Solar Phys. 207, 149. ADS . DOI .

    Article  ADS  Google Scholar 

  • Kumar, P., Srivastava, A.K., Somov, B.V., Manoharan, P.K., Erdelyi Uddin, W.: 2010, Astrophys. J. 723, 1651.

    Article  ADS  Google Scholar 

  • Kurt, V.G., Yushkov, B.Y., Belov, A.V.: 2010, Astron. Lett. 36, 520.

    Article  ADS  Google Scholar 

  • Kuznetsov, S.N., Kurt, V.G., Yushkov, B.Y., Myagkova, I.N., Kudela, K., Kassovicova, J., Slivka, M.: 2006, Contrib. Astron. Obs. Skaln. Pleso 360, 85.

    ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., et al.: 2012, Solar Phys. 275, 17. ADS . DOI .

    Article  ADS  Google Scholar 

  • Lin, R.P., Anderson, K.A., Ashford, S., Carlson, C., Curtis, D., Ergun, R., Larson, D., McFadden, J., McCarthy, M., Parks, G.K., et al.: 1995, Space Sci. Rev. 71, 125.

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., et al.: 2002, Solar Phys. 210, 3. ADS . DOI .

    Article  ADS  Google Scholar 

  • Liu, W., Chen, Q., Petrosian, V.: 2013, Astrophys. J. 767, 168.

    Article  ADS  Google Scholar 

  • Liu, Y., Luhmann, J.G., Bale, S.D., Lin, R.P.: 2009, Astrophys. J. Lett. 691, L151.

    Article  ADS  Google Scholar 

  • Lovell, J.L., Duldig, M.L., Humble, J.E.: 1998, J. Geophys. Res. 103, 23733.

    Article  ADS  Google Scholar 

  • Mavromichalaki, H., Papaioannou, A., Plainaki, C., Sarlanis, C., Souvatzoglou, G., Gerontidou, M., Papailiou, M., Eroshnenko, E., Belov, A., Yanke, V., et al.: 2011, Adv. Space Res. 47, 2210. DOI .

    Article  ADS  Google Scholar 

  • Moraal, H., McCracken, K.G.: 2012, Space Sci. Rev. 1717, 85.

    Article  ADS  Google Scholar 

  • Müller, D., Fleck, B., Dimitoglou Caplins, B.W., Amadigwe, D.E., Ortiz, J.P.G., Wamsler, B., Alexanderian, A., Hughitt, V.K., Ireland, J.: 2009, Comput. Sci. Eng. 11, 38.

    Article  Google Scholar 

  • Prestage, N.P.: 1995, J. Atmos. Solar-Terr. Phys. 57, 1815.

    Article  ADS  Google Scholar 

  • Prestage, N.P., Luckhurst, R.G., Paterson, B.R., Bevins, C.S., Yuile, C.G.: 1994, Solar Phys. 150, 393. ADS . DOI .

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2009, Astrophys. J. 693, 812.

    Article  ADS  Google Scholar 

  • Reeves, K.K., Golub, L.: 2011, Astrophys. J. Lett. 727, L52.

    Article  ADS  Google Scholar 

  • Ryan, J.M., Lockwood, J.A., Debrunner, H.: 2000, Space Sci. Rev. 93, 35.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L. Jr., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, Solar Phys. 275, 207. ADS . DOI .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L.: 2003, Solar Phys. 212, 165. ADS . DOI .

    Article  ADS  Google Scholar 

  • Shanmugaraju, A., Moon, Y.J., Cho, K.S., Dryer, M., Umapathy, S.: 2006, Solar Phys. 233, 117. ADS . DOI .

    Article  ADS  Google Scholar 

  • Shea, M.A., Smart, D.F.: 2012, Space Sci. Rev. 171, 161.

    Article  ADS  Google Scholar 

  • Shea, M.A., Smart, D.F., Humble, J.E., Fluckiger, E.O., Gentile, L.C., Nichol, M.R.: 1987, In: Kozyvarivsky, V.A., Lidvansky, A.S., Tulupova, T.I., Tsyabuk, A.L., Voevdovsky, A.V., Volgemut, N.S. (eds.) Int’l. Cosmic Ray Conf. 3, 171S, SH 3.2 – 17.

    Google Scholar 

  • Shen, Y., Liu, Y.: 2012, Astrophys. J. 754, 7.

    Article  ADS  Google Scholar 

  • Simnett, G.M.: 2006, Astron. Astrophys. 445, 715.

    Article  ADS  Google Scholar 

  • Stoker, P.H., Makgamathe, S.: 1990, Astrophys. J. Suppl. 73, 263.

    Article  ADS  Google Scholar 

  • Struminsky, A.B.: 2005, In: Acharya, B.S., Gupta, S., Iyer, A., Jagadeesan, P., Jain, A., Karthikeyan, S., Morris, S., Tonwar, S. (eds.) 29th Int’l. Cosmic Ray Conf., Pune 1, 201.

    Google Scholar 

  • Vashenyuk, E.V., Fischer, S., Gvozdevsky, B.B.: 1993, In: Leahy, D.A., Hickws, R.B., Venkatesan, D. (eds.) Int’l. Cosmic Ray Conf. 3, World Scientific, Singapore, 266.

    Google Scholar 

  • White, S.M., Benz, A.O., Christe, S., Farnik, F., Kundu, M.R., Mann, G., Ning, Z., Raulin, J.-P., Silva-Valio, A.V.R., Saint-Hilaire, P., Vilmer, N., Warmuth, A.: 2011, Space Sci. Rev. 159, 225.

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, J. Geophys. Res. 109, A07105. DOI .

    Article  ADS  Google Scholar 

  • Yue, X., Schreiner, W.S., Kuo, Y.-H., Zhao, B., Wan, W., Ren, Z., Liu, L., Wei, Y., Lei, J., Solomon, S., Rocken, C.: 2013, J. Geophys. Res. 118, 5906. DOI .

    Article  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., White, S.M.: 2001, Astrophys. J. 559, 452.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous referee for the constructive comments and valuable suggestions that greatly helped us to improve the manuscript. We used NM data from NMDB funded by European Union’s FP7 program (contract No. 213007). To study possible causes of GLEs, data provided by NOAA’s National Geophysical Data Center (NGDC), NASA’s Wind/WAVES, and RHESSI have been used. We acknowledge discussions with David J. Thompson (NASA), Y.-J. Moon (KHU), Z. Ning (PMO/CAS), Q.M. Zhang (PMO/CAS), and R. Gómez-Herrero (EPD/ESA). WQG acknowledges the projects of MSTC (2011CB811402) and NNSFC (11233008 and 11427803). JRP acknowledges the projects of Solar Orbiter-Energetic Particle Detector (EPD): Ciencia y Gestión de Sistemas (AYA2012-39810-C02-01) funded by the Ministerio de Economia y Competitividad, the Solar Orbiter Energetic Particle Detector System Management (AYA2011-29727-C02-01), and DETECTOR DE PARTÍCULAS ENERGÉTICAS PARA SOLAR ORBITER II (ESP2013-48346-C2-1-R). We have used data provided by NOAA’s National Geophysical Data Center (NGDC), NASA’s Wind/WAVES, SDO, RHESSI missions, and the ESA/NASA SOHO mission. SOHO is a mission of international cooperation between ESA and NASA. The SDO/HMI and EVE data are available by courtesy of NASA/SDO and the AIA and EVE science teams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Firoz.

Appendix

Appendix

If reconnection of magnetic fields takes place more than once at different heights of the corona, and the shock wave is produced low in the corona, there might be a possibility that the shock would be turned into a blast wave (see cartoons in, e.g., Aschwanden 2006; Chen 2008; Kumar et al. 2010; Liu, Chen, and Petrosian 2013). If the shock were a freely propagating blast wave, it would decay before reaching the interplanetary medium (because it does not have any driver to back it up). In contrast, the CME-driven shocks continuously receive energy from the driver, so the CME-driven shock is more energetic and long-lived (e.g., Liu et al. 2009). Although there is a possibility of blast waves during CME-less shock events (e.g., Shanmugaraju et al. 2006), we did not find any evidence of a blast wave for the GLE71 event, which is associated with a very fast CME (≈ 1582 km s−1). In practice, the low frequency of Type-II bursts corresponds to densities typical of the upper corona. Since the possible time line exists within the Type-II burst (Figure 2), we can therefore assume for the GLE71 event that the CME-driven shock naturally has a leading role in accelerating the particles (Figure 3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firoz, K.A., Gan, W.Q., Li, Y.P. et al. An Interpretation of a Possible Mechanism for the First Ground-Level Enhancement of Solar Cycle 24. Sol Phys 290, 613–626 (2015). https://doi.org/10.1007/s11207-014-0619-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-014-0619-2

Keywords

Navigation