Skip to main content
Log in

Linear MHD Wave Propagation in Time-Dependent Flux Tube

I. Zero Plasma-β

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

MHD waves and oscillations in sharply structured magnetic plasmas have been studied for static and steady systems in the thin tube approximation over many years. This work will generalize these studies by introducing a slowly varying background density in time, in order to determine the changes to the wave parameters introduced by this temporally varying equilibrium, i.e. to investigate the amplitude, frequency, and wavenumber for the kink and higher order propagating fast magnetohydrodynamic wave in the leading order approximation to the WKB approach in a zero-β plasma representing the upper solar atmosphere. To progress, the thin tube and over-dense loop approximations are used, restricting the results found here to the duration of a number of multiples of the characteristic density change timescale. Using such approximations it is shown that the amplitude of the kink wave is enhanced in a manner proportional to the square of the Alfvén speed, \(V_{\mathrm{A}}^{2}\). The frequency of the wave solution tends to the driving frequency of the system as time progresses; however, the wavenumber approaches zero after a large multiple of the characteristic density change timescale, indicating an ever increasing wavelength. For the higher order fluting modes the changes in amplitude are dependent upon the wave mode; for the m=2 mode the wave is amplified to a constant level; however, for all m≥3 the fast MHD wave is damped within a relatively small multiple of the characteristic density change timescale. Understanding MHD wave behavior in time-dependent plasmas is an important step towards a more complete model of the solar atmosphere and has a key role to play in solar magneto-seismological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Al-Ghafri, K.S., Ruderman, M.S., Erdélyi, R.: 2012, Longitudinal MHD waves in dissipative time-dependent plasma. Astrophys. J., submitted.

  • Andries, J., Goossens, M., Hollweg, J.V., Arregui, I., Van Doorsselaere, T.: 2005, Coronal loop oscillations. Calculation of resonantly damped MHD quasi-mode kink oscillations of longitudinally stratified loops. Astron. Astrophys. 430, 1109 – 1118.

    Article  ADS  Google Scholar 

  • Andries, J., Van Doorsselaere, T., Roberts, B., Verth, G., Verwichte, R., Erdélyi, E.: 2009, Coronal seismology by means of kink oscillation overtones. Space Sci. Rev. 149, 3 – 29.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 2004, Physics of the Solar Corona. An Introduction, Praxis Publishing Ltd, Chichester, 28 – 30.

    Google Scholar 

  • Aschwanden, M.J., Terradas, J.: 2008, The effect of radiative cooling on coronal loop oscillations. Astrophys. J. 686, 127 – 130.

    Article  ADS  Google Scholar 

  • Bender, C.M., Orszag, S.A.: 1978, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 484.

    MATH  Google Scholar 

  • Berghmans, D., Clette, F.: 1999, Active region EUV transient brightenings. Solar Phys. 186, 207 – 229.

    Article  ADS  Google Scholar 

  • De Moortel, I., Ireland, J., Walsh, R.W.: 2000, Observation of oscillations in coronal loops. Astron. Astrophys. 457, L23 – L26.

    Google Scholar 

  • Defouw, R.J.: 1976, Wave propagation along a magnetic tube. Astrophys. J. 209, 266 – 269.

    Article  ADS  Google Scholar 

  • Dymova, M.V., Ruderman, M.S.: 2006, Resonantly damping oscillations of longitudinally stratified coronal loops. Astron. Astrophys. 457, 1059 – 1070.

    Article  ADS  MATH  Google Scholar 

  • Edwin, P.M., Roberts, B.: 1982, Wave propagation in a magnetically structured atmosphere III. Solar Phys. 76, 239 – 259.

    ADS  Google Scholar 

  • Edwin, P.M., Roberts, B.: 1983, Wave propagation in a magnetic cylinder. Solar Phys. 88, 179 – 191.

    ADS  Google Scholar 

  • Erdélyi, R., Al-Ghafri, K.S., Morton, R.J.: 2011, Damping of longitudinal magneto-acoustic oscillations in slowly varying coronal plasma. Solar Phys. 272, 73 – 89.

    Article  ADS  Google Scholar 

  • Erdélyi, R., Fedun, V.: 2010, Magneto-acoustic waves in compressible magnetically twisted flux tubes. Solar Phys. 263, 63 – 85.

    Article  ADS  Google Scholar 

  • Erdélyi, R., Verth, G.: 2007, The effect of density stratification on the amplitude profile of transversal coronal loop oscillations. Astron. Astrophys. 462, 743 – 751.

    Article  ADS  Google Scholar 

  • Goossens, M., Erdélyi, R., Ruderman, M.: 2011, Resonant MHD waves in the solar atmosphere. Space Sci. Rev. 158, 289 – 338.

    Article  ADS  Google Scholar 

  • Goossens, M., Hollweg, V.J., Sakurai, T.: 1992, Resonant behavior of MHD waves on magnetic flux tubes. III – Effect of equilibrium flow. Solar Phys. 138, 233 – 255.

    Article  ADS  Google Scholar 

  • Goossens, M., Ruderman, M., Hollweg, J.: 1995, Dissipative MHD solutions for resonant Alfvén waves in 1-dimensional magnetic flux tubes. Solar Phys. 157, 75 – 102.

    Article  ADS  Google Scholar 

  • Grossmann, W., Tataronis, J.: 1973, Decay of MHD waves by phase mixing. Z. Phys. 261, 217 – 236.

    Article  ADS  Google Scholar 

  • Hasan, S.S.: 2008, Chromospheric dynamics. Adv. Space Res. 42, 86 – 95.

    Article  ADS  Google Scholar 

  • Heyvaerts, J., Priest, E.R.: 1983, Coronal heating by phase-mixed shear Alfvén waves. Astron. Astrophys. 117, 220 – 234.

    ADS  MATH  Google Scholar 

  • Hollweg, J.V.: 1978, Alfvén waves in the solar atmosphere. Solar Phys. 56, 305 – 333.

    ADS  Google Scholar 

  • Ionson, A.J.: 1978, Resonant absorption of Alfvénic surface waves and the heating of solar coronal loops. Astrophys. J. 226, 650 – 673.

    Article  ADS  Google Scholar 

  • Morton, R.J., Erdélyi, R.: 2009, Transverse oscillations of a cooling coronal loop. Astrophys. J. 707, 750.

    Article  ADS  Google Scholar 

  • Morton, R.J., Hood, A.W., Erdélyi, R.: 2010, Propagating magneto-hydrodynamic waves in a cooling homogeneous coronal plasma. Astron. Astrophys. 512, A43.

    Article  Google Scholar 

  • Narain, U., Ulmschneider, P.: 1996, Chromospheric and coronal heating mechanisms II. Space Sci. Rev. 75, 453 – 509.

    Article  ADS  Google Scholar 

  • Narayanan, A.S.: 1991, Hydromagnetic surface waves in compressible moving cylindrical flux tubes. Plasma Phys. Control. Fusion 33, 333 – 338.

    Article  ADS  Google Scholar 

  • O’Shea, E., Banerjee, D., Doyle, J.G., Fleck, B., Murtagh, F.: 2001, Active region oscillations. Astron. Astrophys. 368, 1095 – 1107.

    Article  ADS  Google Scholar 

  • Roberts, B.: 1981a, Wave propagation in a magnetically structured atmosphere I. Solar Phys. 69, 27 – 38.

    Article  ADS  Google Scholar 

  • Roberts, B.: 1981b, Wave propagation in a magnetically structured atmosphere II. Solar Phys. 69, 39 – 56.

    Article  ADS  Google Scholar 

  • Roberts, B.: 2000, Wave and oscillations in the corona. Solar Phys. 193, 139 – 152.

    Article  ADS  Google Scholar 

  • Ruderman, M., Erdélyi, R.: 2009, Transverse oscillations of coronal loops. Space Sci. Rev. 149, 199 – 228.

    Article  ADS  Google Scholar 

  • Ruderman, M.S.: 2005, Damping mechanisms of coronal loop oscillations. In: Danesy, D., Poedts, S., De Groof, A., Andries, J. (eds.) The Dynamic Sun: Challenges for Theory and Observations, Proc. 11th European Solar Physics Meeting, ESA SP-600, 96.1 (on CDROM).

    Google Scholar 

  • Ruderman, M.S.: 2010, The effects of flows on transverse oscillations of coronal loops. Solar Phys. 267, 377 – 391.

    Article  ADS  Google Scholar 

  • Ruderman, M.S., Roberts, B.: 2002, Resonantly damping oscillations of longitudinally stratified coronal loops. Astrophys. J. 577, 475 – 486.

    Article  ADS  Google Scholar 

  • Spruit, H.C.: 1982, Propagation speeds and acoustic damping of waves in magnetic flux tubes. Solar Phys. 75, 3 – 17.

    Article  ADS  Google Scholar 

  • Terra-Homem, M., Erdélyi, R., Ballai, I.: 2003, Linear and non-linear MHD wave propagation in steady-state magnetic cylinders. Solar Phys. 217, 199 – 223.

    Article  ADS  Google Scholar 

  • Verth, G., Erdélyi, R.: 2008, Effect of longitudinal magnetic and density inhomogeneity on transversal coronal loop oscillations. Astron. Astrophys. 486, 1015 – 1022.

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank M.S. Ruderman and R. Morton for a number of useful discussions. RE acknowledges M. Kéray for patient encouragement and is also grateful to NSF, Hungary (OTKA, Ref. No. K83133) for support received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Williamson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, A., Erdélyi, R. Linear MHD Wave Propagation in Time-Dependent Flux Tube. Sol Phys 289, 899–909 (2014). https://doi.org/10.1007/s11207-013-0366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-013-0366-9

Keywords

Navigation