Skip to main content
Log in

Solar Energetic Particle Events in the 23rd Solar Cycle: Interplanetary Magnetic Field Configuration and Statistical Relationship with Flares and CMEs

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We study the influence of the large-scale interplanetary magnetic field configuration on the solar energetic particles (SEPs) as detected at different satellites near Earth and on the correlation of their peak intensities with the parent solar activity. We selected SEP events associated with X- and M-class flares at western longitudes, in order to ensure good magnetic connection to Earth. These events were classified into two categories according to the global interplanetary magnetic field (IMF) configuration present during the SEP propagation to 1 AU: standard solar wind or interplanetary coronal mass ejections (ICMEs). Our analysis shows that around 20 % of all particle events are detected when the spacecraft is immersed in an ICME. The correlation of the peak particle intensity with the projected speed of the SEP-associated coronal mass ejection is similar in the two IMF categories of proton and electron events, ≈ 0.6. The SEP events within ICMEs show stronger correlation between the peak proton intensity and the soft X-ray flux of the associated solar flare, with correlation coefficient r=0.67±0.13, compared to the SEP events propagating in the standard solar wind, r=0.36±0.13. The difference is more pronounced for near-relativistic electrons. The main reason for the different correlation behavior seems to be the larger spread of the flare longitude in the SEP sample detected in the solar wind as compared to SEP events within ICMEs. We discuss to what extent observational bias, different physical processes (particle injection, transport, etc.), and the IMF configuration can influence the relationship between SEPs and coronal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Notes

  1. GOES X-ray classification in the 1 – 8 Å channel: M-class flares have peak flux that exceeds 10−5 W m−2, whereas the X-class flares are 10 times more intense.

  2. http://cdaweb.gsfc.nasa.gov .

  3. http://www.srl.caltech.edu/ACE/ASC/level2/index.html .

  4. ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SGD_PDFversion/ .

  5. http://cdaw.gsfc.nasa.gov/CME_list/ .

  6. Estimating transport effects from rise times is valid under the assumption of a single, short in time particle injection.

  7. http://umtof.umd.edu/pm/crn/ .

  8. For the Wind/EPACT proton data we obtain 22±13 (20±8 in absolute values) for the ICME events and − 6±20 (14±11 in absolute values) for the SoWi events.

  9. Note that the r 2-values of the correlation coefficients found in the present study (and also in earlier work) are usually r 2≲0.5.

  10. Note that five of the eight events in the SoWi category with projected speed below 600 km s−1 occurred near the central meridian.

  11. Proton fluence could not be estimated for three events in the SoWi category.

  12. Electron fluence could not be estimated for one (four) events in the ICME (SoWi) category.

References

  • Bai, T.: 1987, Distribution of flares on the Sun – superactive regions and active zones of 1980 – 1985. Astrophys. J. 314, 795 – 807. doi: 10.1086/165105 .

    Article  ADS  Google Scholar 

  • Bein, B.M., Berkebile-Stoiser, S., Veronig, A.M., Temmer, M., Vrsnak, B.: 2012, Impulsive acceleration of coronal mass ejections: II. Relation to SXR flares and filament eruptions. ArXiv e-prints.

  • Burkepile, J.T., Hundhausen, A.J., Stanger, A.L., St. Cyr, O.C., Seiden, J.A.: 2004, Role of projection effects on solar coronal mass ejection properties: 1. A study of CMEs associated with limb activity. J. Geophys. Res. 109, A03103. doi: 10.1029/2003JA010149 .

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., von Rosenvinge, T.T.: 2010, A study of solar energetic particle events of 1997 – 2006: their composition and associations. J. Geophys. Res. 115, A08101. doi: 10.1029/2009JA014848 .

    Article  ADS  Google Scholar 

  • Chertok, I.M.: 1990, On the correlation between the solar gamma-ray line emission, radio bursts and proton fluxes in the interplanetary space. Astron. Nachr. 311, 379 – 381.

    Article  ADS  Google Scholar 

  • Cliver, E.W., Forrest, D.J., Cane, H.V., Reames, D.V., McGuire, R.E., von Rosenvinge, T.T., Kane, S.R., MacDowall, R.J.: 1989, Solar flare nuclear gamma-rays and interplanetary proton events. Astrophys. J. 343, 953 – 970. doi: 10.1086/167765 .

    Article  ADS  Google Scholar 

  • Garcia, H.A.: 2004, Forecasting methods for occurrence and magnitude of proton storms with solar hard X rays. Space Weather 2, S06003. doi: 10.1029/2003SW000035 .

    Article  ADS  Google Scholar 

  • Gold, R.E., Krimigis, S.M., Hawkins, S.E. III, Haggerty, D.K., Lohr, D.A., Fiore, E., Armstrong, T.P., Holland, G., Lanzerotti, L.J.: 1998, Electron, proton, and alpha monitor on the advanced composition explorer spacecraft. Space Sci. Rev. 86, 541 – 562. doi: 10.1023/A:1005088115759 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Lara, A., Kaiser, M.L., Thompson, B.J., Gallagher, P.T., Howard, R.A.: 2003, Large solar energetic particle events of cycle 23: a global view. Geophys. Res. Lett. 30(12), SEP3-1. doi: 10.1029/2002GL016435 .

    Google Scholar 

  • Gopalswamy, N., Yashiro, S., Krucker, S., Stenborg, G., Howard, R.A.: 2004, Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res. 109, A12105. doi: 10.1029/2004JA010602 .

    Article  ADS  Google Scholar 

  • Hovestadt, D., Hilchenbach, M., Bürgi, A., Klecker, B., Laeverenz, P., Scholer, M.: 1995, CELIAS – Charge, Element and Isotope Analysis System for SOHO. Solar Phys. 162, 441 – 481. doi: 10.1007/BF00733436 .

    Article  ADS  Google Scholar 

  • Kahler, S.W.: 1982a, Radio burst characteristics of solar proton flares. Astrophys. J. 261, 710 – 719. doi: 10.1086/160381 .

    Article  ADS  Google Scholar 

  • Kahler, S.W.: 1982b, The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters. J. Geophys. Res. 87, 3439 – 3448. doi: 10.1029/JA087iA05p03439 .

    Article  ADS  Google Scholar 

  • Kahler, S.W.: 1992, Solar flares and coronal mass ejections. Annu. Rev. Astron. Astrophys. 30, 113 – 141. doi: 10.1146/annurev.aa.30.090192.000553 .

    Article  ADS  Google Scholar 

  • Kahler, S.W.: 2001, The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: effects of ambient particle intensities and energy spectra. J. Geophys. Res. 106, 20947 – 20956. doi: 10.1029/2000JA002231 .

    Article  ADS  Google Scholar 

  • Kahler, S.W., Krucker, S., Szabo, A.: 2011, Solar energetic electron probes of magnetic cloud field line lengths. J. Geophys. Res. 116, A01104. doi: 10.1029/2010JA015328 .

    Article  ADS  Google Scholar 

  • Kahler, S.W., Cliver, E.W., Cane, H.V., McGuire, R.E., Stone, R.G., Sheeley, N.R. Jr.: 1986, Solar filament eruptions and energetic particle events. Astrophys. J. 302, 504 – 510. doi: 10.1086/164009 .

    Article  ADS  Google Scholar 

  • Klecker, B., Kunow, H., Cane, H.V., Dalla, S., Heber, B., Kecskemety, K., et al.: 2006, Energetic particle observations. Space Sci. Rev. 123, 217 – 250. doi: 10.1007/s11214-006-9018-9 .

    Article  ADS  Google Scholar 

  • Klein, K.-L., Trottet, G., Klassen, A.: 2010, Energetic particle acceleration and propagation in strong CME-less flares. Solar Phys. 263, 185 – 208. doi: 10.1007/s11207-010-9540-5 .

    Article  ADS  Google Scholar 

  • Klein, K.-L., Trottet, G., Samwel, S., Malandraki, O.: 2011, Particle acceleration and propagation in strong flares without major solar energetic particle events. Solar Phys. 269, 309 – 333. doi: 10.1007/s11207-011-9710-0 .

    Article  ADS  Google Scholar 

  • Malandraki, O.E., Lario, D., Lanzerotti, L.J., Sarris, E.T., Geranios, A., Tsiropoula, G.: 2005, October/November 2003 interplanetary coronal mass ejections: ACE/EPAM solar energetic particle observations. J. Geophys. Res. 110, A09S06. doi: 10.1029/2004JA010926 .

    Article  ADS  Google Scholar 

  • Marqué, C., Posner, A., Klein, K.-L.: 2006, Solar energetic particles and radio-silent fast coronal mass ejections. Astrophys. J. 642, 1222 – 1235. doi: 10.1086/501157 .

    Article  ADS  Google Scholar 

  • Marubashi, K.: 1997, Interplanetary magnetic flux ropes and solar filamants. In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, AGU Geophys. Monogr. 99, AGU, Washington, 147 – 156.

    Chapter  Google Scholar 

  • Masson, S., Aulanier, G., Pariat, E., Klein, K.-L.: 2012a, Interchange slip-running reconnection and sweeping SEP beams. Solar Phys. 276, 199 – 217. doi: 10.1007/s11207-011-9886-3 .

    Article  ADS  Google Scholar 

  • Masson, S., Démoulin, P., Dasso, S., Klein, K.-L.: 2012b, The interplanetary magnetic structure that guides solar relativistic particles. Astron. Astrophys. 538, A32. doi: 10.1051/0004-6361/201118145 .

    Article  ADS  Google Scholar 

  • Posner, A.: 2007, Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 5, S05001. doi: 10.1029/2006SW000268 .

    Article  Google Scholar 

  • Ramaty, R., Mandzhavidze, N., Kozlovsky, B., Skibo, J.G.: 1993, Acceleration in solar flares: interacting particles versus interplanetary particles. Adv. Space Res. 13, 275 – 284. doi: 10.1016/0273-1177(93)90490-3 .

    Article  ADS  Google Scholar 

  • Reames, D.V.: 1999, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413 – 491. doi: 10.1023/A:1005105831781 .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189 – 237. doi: 10.1007/s11207-010-9568-6 .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V., von Rosenvinge, T.T.: 1991, Prompt arrival of solar energetic particles from far eastern events – the role of large-scale interplanetary magnetic field structure. J. Geophys. Res. 96, 7853 – 7860. doi: 10.1029/91JA00379 .

    Article  ADS  Google Scholar 

  • Sammis, I., Tang, F., Zirin, H.: 2000, The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J. 540, 583 – 587. doi: 10.1086/309303 .

    Article  ADS  Google Scholar 

  • Smith, E.J.: 2008, The global heliospheric magnetic field. In: Balogh, A., Lanzerotti, L.J., Suess, S.T. (eds.) The Heliosphere Through the Solar Activity Cycle, Praxis Publishing, Chichester, 79 – 150.

    Chapter  Google Scholar 

  • Torsti, J., Riihonen, E., Kocharov, L.: 2004, The 1998 May 2 – 3 magnetic cloud: an interplanetary “Highway” for solar energetic particles observed with SOHO/ERNE. Astrophys. J. 600, 83 – 86. doi: 10.1086/381575 .

    Article  ADS  Google Scholar 

  • Tranquille, C., Sanderson, T.R., Marsden, R.G., Wenzel, K.-P., Smith, E.J.: 1987, Properties of a large-scale interplanetary loop structure as deduced from low-energy proton anisotropy and magnetic field measurements. J. Geophys. Res. 92, 6 – 14. doi: 10.1029/JA092iA01p00006 .

    Article  ADS  Google Scholar 

  • Vandas, M., Odstrčil, D., Watari, S.: 2002, Three-dimensional MHD simulation of a loop-like magnetic cloud in the solar wind. J. Geophys. Res. 107(A9), SSH2-1. doi: 10.1029/2001JA005068 .

    Article  Google Scholar 

  • Vršnak, B., Sudar, D., Ruždjak, D.: 2005, The CME-flare relationship: are there really two types of CMEs? Astron. Astrophys. 435, 1149 – 1157. doi: 10.1051/0004-6361:20042166 .

    Article  ADS  Google Scholar 

  • Vršnak, B., Sudar, D., Ruždjak, D., Žic, T.: 2007, Projection effects in coronal mass ejections. Astron. Astrophys. 469, 339 – 346. doi: 10.1051/0004-6361:20077175 .

    Article  ADS  Google Scholar 

  • Wall, J.V., Jenkins, C.R.: 2003, Practical Statistics for Astronomers, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Wang, Y., Zhang, J.: 2008, A statistical study of solar active regions that produce extremely fast coronal mass ejections. Astrophys. J. 680, 1516 – 1522. doi: 10.1086/587619 .

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N.: 2009, Statistical relationship between solar flares and coronal mass ejections. In: Gopalswamy, N., Webb, D.F. (eds.) IAU Symp. 257, 233 – 243. doi: 10.1017/S1743921309029342 .

    Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105. doi: 10.1029/2003JA010282 .

    Article  Google Scholar 

  • Yeh, C.-T., Ding, M.D., Chen, P.F.: 2005, Kinetic properties of CMEs corrected for the projection effect. Solar Phys. 229, 313 – 322. doi: 10.1007/s11207-005-6883-4 .

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., White, S.M.: 2001, On the temporal relationship between coronal mass ejections and flares. Astrophys. J. 559, 452 – 462. doi: 10.1086/322405 .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge D. Boscher (ONERA Toulouse) for making the IPODE database of GOES particle measurements available to us. We also thank T. Dudok de Wit, M. Temmer, G. Trottet, H. Reid, and A. Veronig for helpful discussions and the referee for her/his comments. R.M. acknowledges a post-doctoral fellowship by Paris Observatory. The CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Miteva.

Appendix

Appendix

Tables 4 – 6 summarize all data used in the paper, organized in different IMF categories, namely ICME, SoWi and SEP events in the vicinity of an ICME (Section 3.1). The events in each table are listed chronologically: The event date is given in column (1). The proton and electron peak intensities (with their onset time) follow in columns (2) – (5). The next four columns give the SXR peak flux (with the onset time), the flare position on the western (W) hemisphere, the projected CME speed and the angular width (AW), as reported in catalogs or from previous work. The data sources are explained in detail in the footnotes under each table. In column (10) we give the temporal offset between the GOES SEP start (or at Wind at 1 AU) and the nearest-in-time boundary of the ICME (shifted at GOES orbit or as observed at 1 AU). This value is used as a confidence check for the identification of the IMF category. Although we used exclusively the timings of the ICME boundaries as reported in Richardson and Cane (2010), differences might exist with other ICME lists due to different definition used for an ICME, variation in the IMF data from different satellites and also due to the subjectivity of the observer. In the ICME category (Table 4) two events are relatively close (about 2 h) to the reported ICME onset and may change category after a detailed analysis. All other events in this category are well within the body of the ICME. Similarly for the last SEP category (Table 6), some SEP events might be propagating in quiet solar wind conditions, although many are in the sheath region of the ICME or occur only several hours before or after the ICME boundary. Rise times are given in column (11) in Tables 4 and 5. Finally, in the last two columns in each table the solar wind speed (averaged values) and the connection distance are given.

The linear regression between the logI SXR–logV CME is given in Table 11 and the dependencies between logJ max and the logarithms of the parameters of coronal activity are summarized in Table 12.

Table 4 ICME solar energetic particle events.
Table 5 SoWi solar energetic particle events.
Table 6 Solar energetic particle events in the vicinity of an ICME.
Table 7 Linear correlation coefficients (with standard deviations) between logJ max and logI SXR or logV CME for GOES proton and ACE/EPAM low energy electron data, for the entire event sample (i.e. no event restriction) and for different sub-samples. The number of events in each group is given in brackets.
Table 8 Correlation coefficients with standard deviations of the particle fluence, Φ, with the flare and CME parameters.
Table 9 Linear correlation coefficients (with standard deviations) between \(\log\Phi_{\rm p,e}\) and logI SXR or logV CME for GOES proton and ACE/EPAM low energy electron data, for the entire event sample (i.e. no event restriction) and for different sub-samples. The number of events in each group is given in brackets.
Table 10 Correlation coefficients with standard deviations of the J max with the flare and CME parameters with respect to the connection distance of the particles for the Wind/EPACT proton and ACE/EPAM low energy channel electron data.
Table 11 Relationship between logI SXR and logV CME for flare/CME events associated with GOES proton and ACE/EPAM electron SEP events, derived from the linear fits.
Table 12 Relationship between logJ max and the flare and CME parameters for the GOES proton and ACE/EPAM electron SEP events, derived from the linear fits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miteva, R., Klein, KL., Malandraki, O. et al. Solar Energetic Particle Events in the 23rd Solar Cycle: Interplanetary Magnetic Field Configuration and Statistical Relationship with Flares and CMEs. Sol Phys 282, 579–613 (2013). https://doi.org/10.1007/s11207-012-0195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-0195-2

Keywords

Navigation