Skip to main content

Advertisement

Log in

Evolution of Solar and Geomagnetic Activity Indices, and Their Relationship: 1960 – 2001

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We employ annually averaged solar and geomagnetic activity indices for the period 1960 – 2001 to analyze the relationship between different measures of solar activity as well as the relationship between solar activity and various aspects of geomagnetic activity. In particular, to quantify the solar activity we use the sunspot number R s, group sunspot number R g, cumulative sunspot area Cum, solar radio flux F10.7, and interplanetary magnetic field strength IMF. For the geomagnetic activity we employ global indices Ap, Dst and Dcx, as well as the regional geomagnetic index RES, specifically estimated for the European region. In the paper we present the relative evolution of these indices and quantify the correlations between them. Variations have been found in: i) time lag between the solar and geomagnetic indices; ii) relative amplitude of the geomagnetic and solar activity peaks; iii) dual-peak distribution in some of solar and geomagnetic indices. The behavior of geomagnetic indices is correlated the best with IMF variations. Interestingly, among geomagnetic indices, RES shows the highest degree of correlation with solar indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baker, D.N.: 2000, Effects of the Sun on the Earth’s environment. J. Atmos. Solar-Terr. Phys. 62, 1669 – 1681.

    Article  ADS  Google Scholar 

  • Baumjohann, W.: 1986, Merits and limitations of the use of geomagnetic indices in solar wind–magnetosphere coupling studies. In: Kamide, Y., Slavin, J.A. (eds.) Solar Wind Magnetosphere Coupling, Reidel, Dordrecht, 3 – 15.

    Chapter  Google Scholar 

  • Borovsky, J.E., Denton, M.H.: 2006, Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 111, A07S08.

    Article  Google Scholar 

  • Campbell, W.H.: 2003, Introduction to Geomagnetic Fields, Cambridge University Press, Cambridge, 103 – 173.

    Google Scholar 

  • Cole, D.G.: 2003, Spaceweather: Its effects and predictability. Space Sci. Rev. 107, 295 – 302.

    Article  ADS  Google Scholar 

  • Crooker, N.U., Feynman, J., Gosling, J.T.: 1977, On the hight correlation between long-term averages of solar wind speed and geomagnetic activity. J. Geophys. Res. 82, 1933 – 1937.

    Article  ADS  Google Scholar 

  • Echer, E., Gonzales, W.D., Gonzalez, A.L.C.A., Prestes, A., Vieira, L.E.A., dal Lago, A., Guarnieri, F.L., Schuch, N.J.: 2004, Long-term correlation between solar and geomagnetic activity. J. Atmos. Solar-Terr. Phys. 66, 1019 – 1025.

    Article  ADS  Google Scholar 

  • Echer, E., Gonzalez, W.D., Guarnieri, F.L., Lago, A.D., Vieira, L.E.A.: 2005, Introduction to space weather. Adv. Space Res. 35, 855 – 865.

    Article  ADS  Google Scholar 

  • Eddy, J.A.: 1976, The Maunder minimum. Science 192, 1189 – 1202.

    Article  ADS  Google Scholar 

  • Georgieva, K., Kirov, B., Gavruseva, E.: 2006, Geoeffectiveness of different solar drivers, and long term variations of the correlation between sunspot and geomagnetic activity. Phys. Chem. Earth 31, 81 – 87.

    Google Scholar 

  • Georgieva, K., Kirov, B., Gavruseva, E.: 2010, Solar dynamo and geomagnetic activity. ArXiv:1003.2533 .

  • Gonzalez, W.D., Gonzalez, A.L.C., Tsurutani, B.T.: 1990, Dual-peak solar cycle distribution of intense geomagnetic storms. Planet. Space Sci. 38, 181 – 187.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Tsurutani, B.T., Clúa de Gonzalez, A.L.: 1999, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88, 529 – 562.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is geomagnetic storms. J. Geophys. Res. 99, 5771 – 5792.

    Article  ADS  Google Scholar 

  • Guarnieri, F.L., Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Grande, M., Soraas, F., Ech, E.: 2006, ICME and CIR storms with particular emphasis on HILDCAA events. In: Gopalswamy, N., Bhattacharyya, A. (eds.) Solar influence on the Heliosphere and Earth’s Environment: Recent Progress and Prospects, Indian Institute of Geomagnetism, Mumbai, 266 – 300.

    Google Scholar 

  • Hargreaves, J.K.: 1992, The Solar-Terrestrial Environment, Cambridge University Press, Cambridge, 390 – 402.

    Google Scholar 

  • Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7(1).

  • Hoyt, D.V., Schatten, K.H.: 1996, How well was the Sun observed during the Maunder minimum?. Solar Phys. 165, 181 – 192.

    Article  ADS  Google Scholar 

  • Jacobs, J.A.: 1987, Geomagnetism, Vol. 1, Academic Press, London, 249 – 512.

    Google Scholar 

  • Kivelson, M.G., Russel, C.T.: 1995, Introduction to Space Physics, Cambridge University Press, Cambridge, 289 – 291.

    Google Scholar 

  • Legrand, J.P., Simon, P.A.: 1991, A two-component solar cycle. Solar Phys. 131, 187 – 209.

    Article  ADS  Google Scholar 

  • Lockwood, M., Stamper, R., Wild, M.N.: 1999, A doubling of the Sun’s coronal magnetic field during the past 100 years. Nature 399, 437 – 439.

    Article  ADS  Google Scholar 

  • Mandea, M., Thèbault, E.: 2007, The Changing Faces of the Earth’s Magnetic Field: A Glance at the Magnetic Lithospheric Field, from Local and Regional Scales to a Planetary View, Commission for the Geological Map of the World, 16 – 41. ISBN 978-2-9517181-9-7.

  • Menvielle, M., Berthelier, A.: 1991, The K-derived planetary indices – Description and availability. Rev. Geophys. 29, 415 – 432.

    Article  ADS  Google Scholar 

  • Mursula, K., Karinen, A.: 2005, Explaining and correcting the excessive semiannual variation in the Dst index. Geophys. Res. Lett. 32, 14107 – 14111.

    Article  ADS  Google Scholar 

  • Mursula, K., Holappa, L., Karinen, A.: 2008, Correct normalization of the Dst index. Astrophys. Space Sci. Trans. 4, 41 – 45.

    Article  ADS  Google Scholar 

  • Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, E.C., Vaiana, G., Lazarus, A.J., Sullivan, J.D., McIntosh, P.S.: 1976, Coronal holes as sources of solar wind. Solar Phys. 46, 303 – 322.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cliver, E.W., Cane, H.V.: 2002, Long-term trends in interplanetary magnetic field strength and solar wind structure during the twentieth century. J. Geophys. Res. 107(A10), SSH 12-1.

    Article  Google Scholar 

  • Rostoker, G.: 1972, Geomagnetic indices. Rev. Geophys. Space Phys. 10, 935 – 950.

    Article  ADS  Google Scholar 

  • Sabaka, T.J., Olsen, N., Purucker, M.E.: 2004, Extending comprehensive models of the Earth’s magnetic field with Oersted and CHAMP data. Geophys. J. Int. 159, 521 – 547.

    Article  ADS  Google Scholar 

  • Schwenn, R.: 2006, Space weather: The solar perspective. Living Rev. Solar Phys. 3(2).

  • Siscoe, G.: 2000, The space-weather enterprise: past, present, and future. J. Atmos. Solar-Terr. Phys. 62, 1223 – 1232.

    Article  ADS  Google Scholar 

  • Stamper, R., Lockwood, M., Wild, M.N., Clark, T.D.G.: 1999, Solar causes of the long-term increase in geomagnetic activity. J. Geophys. Res. 104, 28325 – 28342.

    Article  ADS  Google Scholar 

  • Svalgaard, L., Cliver, E.W.: 2005, The IDV index: Its derivation and use in inferring long-term variations of the interplanetary magnetic field strength. J. Geophys. Res. 110, A12103.

    Article  ADS  Google Scholar 

  • Svalgaard, L., Cliver, E.W.: 2007, A floor in the solar wind magnetic field. Astron. J. 661, 203 – 206.

    Google Scholar 

  • Tapping, K.F.: 1987, Recent solar radio astronomy at centimeter wavelengths: The temporal variability of the 10.7-cm flux. J. Geophys. Res. 92, 829 – 838.

    Article  ADS  Google Scholar 

  • Verbanac, G., Korte, M., Mandea, M.: 2007, On long-term trends of the European geomagnetic observatory biases. Earth Planets Space 59, 685 – 695.

    ADS  Google Scholar 

  • Verbanac, G., Vršnak, B., Temmer, M., Korte, M., Mandea, M.: 2010, Four decades of geomagnetic and solar activity: 1960 – 2001. J. Atmos. Solar-Terr. Phys. 72, 607 – 616.

    Article  Google Scholar 

  • Verbanac, G., Vršnak, B., Veronig, M., Temmer, A.M.: 2011a, Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. Astron. Astrophys. 526, 1 – 14.

    Article  Google Scholar 

  • Verbanac, G., Vršnak, B., Živković, S., Hojsak, T., Veronig, A.M., Temmer, M.: 2011b, Solar wind high-speed streams and related geomagnetic activity in declining phase of solar cycle 23. Astron. Astrophys. accepted.

  • Vršnak, B., Temmer, M., Veronig, A.M.: 2007, Coronal holes and solar wind high-speed streams: II. Forecasting the geomagnetic effects. Solar Phys. 240, 331 – 346.

    Article  ADS  Google Scholar 

  • Webb, D.F.: 2002, CMES and the solar cycle variation in their geoeffectiveness. In: Wilson, A. (ed.) Proceedings of the SOHO 11 Symposium on from Solar Min to Max: Half a Solar Cycle with SOHO SP-508, ESA, Noordwijk, 409 – 419.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Verbanac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbanac, G., Mandea, M., Vršnak, B. et al. Evolution of Solar and Geomagnetic Activity Indices, and Their Relationship: 1960 – 2001. Sol Phys 271, 183–195 (2011). https://doi.org/10.1007/s11207-011-9801-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9801-y

Keywords

Navigation