Skip to main content
Log in

Forecasting the Time Series of Sunspot Numbers

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Forecasting the solar cycle is of great importance for weather prediction and environmental monitoring, and also constitutes a difficult scientific benchmark in nonlinear dynamical modeling. This paper describes the identification of a model and its use in the forecasting the time series comprised of Wolf’s sunspot numbers. A key feature of this procedure is that the original time series is first transformed into a symmetrical space where the dynamics of the solar dynamo are unfolded in a better way, thus improving the model. The nonlinear model obtained is parsimonious and has both deterministic and stochastic parts. Monte Carlo simulation of the whole model produces very consistent results with the deterministic part of the model but allows for the determination of confidence bands. The obtained model was used to predict cycles 24 and 25, although the forecast of the latter is seen as a crude approximation, given the long prediction horizon required. As for the 24th cycle, two estimates were obtained with peaks of 65±16 and of 87±13 units of sunspot numbers. The simulated results suggest that the 24th cycle will be shorter and less active than the preceding one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aguirre, L.A.: 1995, A nonlinear correlation function for selecting the delay time in dynamical reconstructions. Phys. Lett. A 203(2 – 3), 88 – 94.

    Article  ADS  Google Scholar 

  • Aguirre, L.A., Billings, S.A.: 1995, Retrieving dynamical invariants from chaotic data using NARMAX models. Int. J. Bifurc. Chaos 5(2), 449 – 474.

    Article  MATH  Google Scholar 

  • Aguirre, L.A., Letellier, C.: 2005, Observability of multivariable differential embeddings. J. Phys. A: Math. Gen. 38, 6311 – 6326.

    Article  MATH  MathSciNet  Google Scholar 

  • Aguirre, L.A., Mendes, E.M.A.M.: 1996, Nonlinear polynomial models: structure, term clusters and fixed points. Int. J. Bifurc. Chaos 6(2), 279 – 294.

    Article  MATH  MathSciNet  Google Scholar 

  • Aguirre, L.A., Rodrigues, G.G., Mendes, E.M.A.M.: 1997, Nonlinear identification and cluster analysis of chaotic attractors from a real implementation of Chua’s circuit. Int. J. Bifurc. Chaos 7(6), 1411 – 1423.

    Article  MATH  Google Scholar 

  • Aguirre, L.A., Barros, V.C., Souza, A.V.P.: 1999, Nonlinear multivariable modeling and analysis of sleep apnea time series. Comput. Biol. Med. 29(3), 207 – 228.

    Article  Google Scholar 

  • Aguirre, L.A., Furtado, E.C., Tôrres, L.A.B.: 2006, Evaluation of dynamical models: Dissipative synchronization and other techniques. Phys. Rev. E 74, 019612.

    Article  Google Scholar 

  • Aguirre, L.A., Rodrigues, D.D., Lima, S.T., Martinez, C.B.: 2008, Dynamical prediction and pattern mapping in short term load-forecasting. Electr. Power Energy Syst. 30, 73 – 82.

    Article  Google Scholar 

  • Attia, A.F., Abdel-Hamid, R., Quassim, M.: 2005, Prediction of solar activity based on neuro-fuzzy modeling. Solar Phys. 227, 177 – 191.

    Article  ADS  Google Scholar 

  • Barkhatov, N.A., Korolev, A.V., Ponomarev, S.M., Sakharov, S.Y.: 2001, Long-term forecasting of solar activity indices using neural networks. Radiophys. Quantum Electron. 44(9), 742 – 749.

    Article  Google Scholar 

  • Billings, S.A., Chen, S., Korenberg, M.J.: 1989, Identification of MIMO nonlinear systems using a forward-regression orthogonal estimator. Int. J. Control 49(6), 2157 – 2189.

    MATH  MathSciNet  Google Scholar 

  • Bracewell, R.N.: 1953, The sunspot number series. Nature 171, 649 – 650.

    Article  ADS  Google Scholar 

  • Buchler, J.R., Kolláth, Z., Cadmus, R.R., Jr.: 2004, Evidence for low-dimensional chaos in semiregular variable stars. Astrophys. J. 613, 532 – 547.

    Article  ADS  Google Scholar 

  • Cameron, R., Schüssler, M.: 2007, Solar cycle prediction using precursors and flux transport models. Astrophys. J. 659, 801 – 811.

    Article  ADS  Google Scholar 

  • Carbonell, M., Oliver, R., Ballester, J.L.: 1994, A search for chaotic behavior in solar activity. Astron. Astrophys. 290(3), 983 – 994.

    ADS  Google Scholar 

  • Chen, S., Billings, S.A., Luo, W.: 1989, Orthogonal least squares methods and their application to nonlinear system identification. Int. J. Control 50(5), 1873 – 1896.

    Article  MATH  MathSciNet  Google Scholar 

  • Choudhuri, A.R., Chatterjee, P., Jiang, J.: 2007, Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98(5), 131103.

    Article  ADS  Google Scholar 

  • De Meyer, F.: 2003, A transfer function model for the sunspot cycle. Solar Phys. 217, 349 – 366.

    Article  ADS  Google Scholar 

  • Duhau, S.: 2003, An early prediction of maximum sunspot number in solar cycle 24. Solar Phys. 213, 203 – 212.

    Article  ADS  Google Scholar 

  • Eddy, J.A.: 1976, The Maunder minimum. Science 192, 1189 – 1202.

    Article  ADS  Google Scholar 

  • Gholipour, A., Lucas, C., Araabi, B.N., Shafiee, M.: 2005, Solar activity forecast: Spectral analysis and neurofuzzy prediction. J. Atmos. Solar-Terr. Phys. 67, 595 – 603.

    Article  ADS  Google Scholar 

  • Gilmore, R., Lefranc, M.: 2002, The Topology of Chaos, Wiley Interscience, New York.

    MATH  Google Scholar 

  • Gilmore, R., Letellier, C.: 2007, The Symmetry of Chaos, Oxford University Press, New York.

    MATH  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1994, The shape of the sunspot cycle. Solar Phys. 151, 177 – 190.

    Article  ADS  Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: 1998, Group sunspot numbers: a new solar activity reconstruction. Solar Phys. 179, 189 – 219.

    Article  ADS  Google Scholar 

  • Kremliovsky, M.N.: 1994, Can we understand time scales of solar activity? Solar Phys. 151, 351 – 370.

    Article  ADS  Google Scholar 

  • Kremliovsky, M.N.: 1995, Limits of predictability of solar activity. Solar Phys. 159, 371 – 380.

    Article  ADS  Google Scholar 

  • Lainscsek, C.S.M., Schürrer, F., Kadtke, J.: 1998, A general form for global dynamical data models for three-dimensional systems. Int. J. Bifurc. Chaos 8(5), 899 – 914.

    Article  MATH  Google Scholar 

  • Letellier, C., Gilmore, R.: 2001, Covering dynamical systems: Two-fold covers. Phys. Rev. E 63, 016206.

    Article  ADS  MathSciNet  Google Scholar 

  • Letellier, C., Malasoma, J.M.: 2001, Unimodal order in the image of the simplest equivariant jerk system. Phys. Rev. E 64, 067202.

    Article  ADS  Google Scholar 

  • Letellier, C., Dutertre, P., Maheu, B.: 1995, Unstable periodic orbits and templates of the Rössler system: Toward a systematic topological characterization. Chaos 5(1), 271 – 282.

    Article  ADS  Google Scholar 

  • Letellier, C., Le Sceller, L., Dutertre, P., Gouesbet, G., Fei, Z., Hudson, J.L.: 1995, Topological characterization and global vector field reconstruction from an experimental electrochemical system. J. Phys. Chem. A 99, 7016 – 7027.

    Article  Google Scholar 

  • Letellier, C., Dutertre, P., Reizner, J., Gouesbet, G.: 1996, Evolution of multimodal map induced by an equivariant vector field. J. Phys. A 29, 5359 – 5373.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Letellier, C., Maquet, J., Labro, H., Le Sceller, L., Gouesbet, G., Arnéodo, A.: 1998, Analyzing chaotic behaviour in a belousov-zhabotinskii reaction by using a global vector field reconstruction. J. Phys. Chem. A 102, 10265 – 10273.

    Article  Google Scholar 

  • Letellier, C., Aguirre, L.A., Maquet, J., Gilmore, R.: 2006, Evidence for low dimensional chaos in sunspot cycles. Astron. Astrophys. 449, 379 – 387.

    Article  ADS  Google Scholar 

  • Li, K.J.: 1999, The shape of the sunspot cycle described by sunspot areas. Astron. Astrophys. 345, 1006 – 1010.

    ADS  Google Scholar 

  • Li, Q.X., Li, K.J.: 2007, Low dimensional chaos from the group sunspot numbers. Chin. J. Astron. Astrophys. 7(3), 435 – 440.

    Article  ADS  Google Scholar 

  • Li, K.J., Yun, H.S., Gu, X.M.: 2001, On long-term predictions of the maximum sunspot numbers of solar cycles 21 to 23. Astron. Astrophys. 368, 285 – 291.

    Article  ADS  Google Scholar 

  • Makarenko, N.G., Karimova, L.M., Novak, M.M.: 2007, Investigation of global solar magnetic field by computational topology methods. Physica A 380, 98 – 108.

    Article  ADS  Google Scholar 

  • Mindlin, G.B., Gilmore, R.: 1992, Topological analysis and synthesis of chaotic time series. Physica D 58, 229 – 242.

    Article  ADS  MathSciNet  Google Scholar 

  • Mininni, P.D., Gómez, D.O., Mindlin, G.B.: 2000, Stochastic relaxation oscillator model for the solar cycle. Phys. Rev. Lett. 85(25), 5476 – 5479.

    Article  ADS  Google Scholar 

  • Moroz, I., Letellier, C., Gilmore, R.: 2007, When are projections also embeddings? Phys. Rev. E 75, 046201.

    ADS  MathSciNet  Google Scholar 

  • Nikonova, M.V., Klochek, N.V., Smolkov, G.Y.: 2000, Forecasting the solar activity using the nonlinear spectral model. Adv. Space Res. 26(1), 183 – 186.

    Article  ADS  Google Scholar 

  • Ogurtsov, M.G.: 2005, On the possibility of forecasting the sun’s activity using radiocarbon solar proxy. Solar Phys. 231, 167 – 176.

    Article  ADS  Google Scholar 

  • Orfila, A., Ballester, J.L., Oliver, R., Alvarez, A., Tintoré, J.: 2002, Evidence for low dimensional chaos in sunspot cycles. Astron. Astrophys. 386, 313 – 318.

    Article  ADS  Google Scholar 

  • Qin, Z.: 1998, The transitional time scale from stochastic to chaotic behavior for solar activity. Solar Phys. 178, 423 – 431.

    Article  ADS  Google Scholar 

  • Schatten, K.: 2003, Long-range solar activity predictions: a reprieve from cycle # 24’s activity. In: Flight Mechanics Symposium. NASA Goddard Space Flight Center, Greenbelt, 1 – 11.

    Google Scholar 

  • Sello, S.: 2001, Solar cycle forecasting: A nonlinear dynamics approach. Astron. Astrophys. 377, 312 – 320.

    Article  ADS  Google Scholar 

  • Sello, S.: 2003, Solar cycle activity: A preliminary prediction for cycle #24. Astron. Astrophys. 410, 691 – 693.

    Article  ADS  Google Scholar 

  • Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Sunspot cycle 24: Smallest cycle in 100 years? Geophys. Res. Lett. 32, L01104.

    Article  Google Scholar 

  • Tsirulnik, L.B., Kuznetsova, T.V., Oraevsky, V.N.: 1997, Forecasting the 23rd and 24th solar cycles on the basis of MGM spectrum. Adv. Space Res. 20(12), 2369 – 2372.

    Article  ADS  Google Scholar 

  • Tufillaro, N.B., Wyckoff, P., Brown, R., Schreiber, T., Molteno, T.: 1995, Topological time-series analysis of a string experiment and its synchronized model. Phys. Rev. E 51(1), 164 – 174.

    Article  ADS  Google Scholar 

  • Wolf, R.: 1852, Sunspot epochs since A.D. 1610: The periodic return of sunspot minima. Acad. Sci. C. R. 35, 704 – 705.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Aguirre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguirre, L.A., Letellier, C. & Maquet, J. Forecasting the Time Series of Sunspot Numbers. Sol Phys 249, 103–120 (2008). https://doi.org/10.1007/s11207-008-9160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-008-9160-5

Keywords

Navigation