, Volume 94, Issue 3, pp 1137-1160

First online:

Open Access This content is freely available online to anyone, anywhere at any time.

Search strategies along the academic lifecycle

  • Edwin HorlingsAffiliated withScience System Assessment Department, Rathenau Institute Email author 
  • , Thomas GurneyAffiliated withScience System Assessment Department, Rathenau Institute


Understanding how individual scientists build a personal portfolio of research is key to understanding outcomes on the level of scientific fields, institutions, and systems. We lack the scientometric and statistical instruments to examine the development over time of the involvement of researchers in different problem areas. In this paper we present a scientometric method to map, measure, and compare the entire corpus of individual scientists. We use this method to analyse the search strategies of 43 condensed matter physicists along their academic lifecycle. We formulate six propositions that summarise our theoretical expectations and are empirically testable: (1) a scientist’s work consists of multiple finite research trails; (2) a scientist will work in several parallel research trails; (3) a scientist’s role in research trail selection changes along the lifecycle; (4) a scientist’s portfolio will converge before it diverges; (5) the rise and fall of research trails is associated with career changes; and (6) the rise and fall of research trails is associated with the potential for reputational gain. Four propositions are confirmed, the fifth is rejected, and the sixth could not be confirmed or rejected. In combination, the results of the four confirmed propositions reveal specific search strategies along the academic lifecycle. In the PhD phase scientists work in one problem area that is often unconnected to the later portfolio. The postdoctoral phase is where scientists diversify their portfolio and their social network, entering various problem areas and abandoning low-yielding ones. A professor has a much more stable portfolio, leading the work of PhDs and postdoctoral researchers. We present an agenda for future research and discuss theoretical and policy implications.


Mapping science Academic careers Lifecycle Agenda setting Problem choice Complex adaptive system