Research on Chemical Intermediates

, Volume 40, Issue 3, pp 973–990

Hydroxyl radical reactions with 2-chlorophenol as a model for oxidation in supercritical water

  • Jiaming Zhang
  • Chunyuan Ma
  • Youmin Sun
  • Xiaohua Ren
Article

DOI: 10.1007/s11164-012-1015-x

Cite this article as:
Zhang, J., Ma, C., Sun, Y. et al. Res Chem Intermed (2014) 40: 973. doi:10.1007/s11164-012-1015-x

Abstract

To determine the detailed mechanism of 2-chlorophenol (2-CP) oxidation in supercritical water, both the experiments and theoretical calculations were conducted in this paper. A set of experiments was performed to oxidize 2-CP in supercritical water under temperatures of 380–420 °C, pressure of 25 MPa, residence times of 0–60 s, and H2O2 as oxidant. By determining the molar yields of products, the primary single-ring products were identified as chlorohydroquinone, 2,4-dichlorophenol (2,4-DCP), 2,6-DCP, and 4-CP. The trends for the molar yields of the four products were analyzed at various temperatures and residence times. And built upon the trends, the possible reaction pathways were conjectured. Subsequently, the reaction mechanism was further verified by theoretical calculations, in which density functional theory was adopted as the computational method. The calculated results have well illustrated the experimental results and ascertained the reaction paths we proposed.

Keywords

2-ChlorophenolSupercritical waterHydroxyl radicalTheoretical calculation

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jiaming Zhang
    • 1
    • 2
  • Chunyuan Ma
    • 1
    • 2
  • Youmin Sun
    • 3
  • Xiaohua Ren
    • 1
  1. 1.School of Environmental Science and EngineeringShandong UniversityJinanChina
  2. 2.National Engineering Laboratory for Coal-fired Pollutants Emission ReductionShandong UniversityJinanChina
  3. 3.School of Municipal and Environmental EngineeringShandong Jianzhu UniversityJinanChina