Skip to main content

Advertisement

Log in

Fat sensing and metabolic syndrome

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Overconsumption of dietary fat contributes to the development of obesity and metabolic syndrome. Recent evidence suggests that high dietary fat may promote these metabolic states not only by providing calories but also by inducing impaired control of energy balance. In normal metabolic states, fat interacts with various organs or receptors to generate signals for the regulation of energy balance. Many of these interactions are impaired by high-fat diets or in obesity, contributing to the development or maintenance of obesity. These impairments may arise largely from fundamental alterations in the hypothalamus where all peripheral signals are integrated to regulate energy balance. This review focuses on various mechanisms by which fat is sensed at different stages of ingestion, circulation, storage, and utilization to regulate food intake, and how these individual mechanisms are altered by high-fat diets or in obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. American heart association; national heart, lung, and blood institute. Diagnosis and management of the metabolic syndrome: An american heart association/national heart, lung, and blood institute scientific statement. Circulation. 2005;112(17):2735–52.

    PubMed  Google Scholar 

  2. Kopelman PG. Obesity as a medical problem. Nature. 2000;404(6778):635–43.

    CAS  PubMed  Google Scholar 

  3. Lissner L, Heitmann BL. Dietary fat and obesity: Evidence from epidemiology. Eur J Clin Nutr. 1995;49(2):79–90.

    CAS  PubMed  Google Scholar 

  4. Lichtenstein AH, Kennedy E, Barrier P, Danford D, Ernst ND, Grundy SM, et al. Dietary fat consumption and health. Nutr Rev. 1998;56(5 Pt 2):S3–19. discussion S19-28.

    CAS  PubMed  Google Scholar 

  5. Riccardi G, Giacco R, Rivellese AA. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr. 2004;23:447–56.

    CAS  PubMed  Google Scholar 

  6. Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH, Kim CK, et al. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: Role of intramuscular accumulation of lipid metabolites. J Appl Physiol. 2006;100:1467–74.

    CAS  PubMed  Google Scholar 

  7. Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring). 2009;17(11):2100–2.

    Google Scholar 

  8. Bray MS, Tsai JY, Villegas-Montoya C, Boland BB, Blasier Z, Egbejimi O, et al. Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. Int J Obes (Lond). 2010;34(11):1589–98.

    CAS  Google Scholar 

  9. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Seeley RJ, Woods SC. Monitoring of stored and available fuel by the CNS: Implications for obesity. Nat Rev Neurosci. 2003;4(11):901–9.

    CAS  PubMed  Google Scholar 

  11. Ryan KK, Woods SC, Seeley RJ. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab. 2012;15(2):137–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yue JT, Lam TK. Lipid sensing and insulin resistance in the brain. Cell Metab. 2012;15(5):646–55.

    CAS  PubMed  Google Scholar 

  13. Neel JV. Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14(4):353–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Speakman JR. A nonadaptive scenario explaining the genetic predisposition to obesity: The “predation release” hypothesis. Cell Metab. 2007;6(1):5–12.

    CAS  PubMed  Google Scholar 

  15. Jordan SD, Könner AC, Brüning JC. Sensing the fuels: Glucose and lipid signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci. 2010;67(19):3255–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Caspi L, Wang PY, Lam TK. A balance of lipid-sensing mechanisms in the brain and liver. Cell Metab. 2007;6(2):99–104.

    CAS  PubMed  Google Scholar 

  17. Hevener AL, Bergman RN, Donovan CM. Novel glucosensor for hypoglycemic detection localized to the portal vein. Diabetes. 1997;46(9):1521–5.

    CAS  PubMed  Google Scholar 

  18. Stewart JE, Newman LP, Keast RS. Oral sensitivity to oleic acid is associated with fat intake and body mass index. Clin Nutr. 2011;30(6):838–44.

    CAS  PubMed  Google Scholar 

  19. Covasa M. Deficits in gastrointestinal responses controlling food intake and body weight. Am J Physiol Regul Integr Comp Physiol. 2010;299(6):R1423–39.

    CAS  PubMed  Google Scholar 

  20. Ritter S, Taylor JS. Vagal sensory neurons are required for lipoprivic but not glucoprivic feeding in rats. Am J Physiol. 1990;258(6 Pt 2):R1395–401.

    CAS  PubMed  Google Scholar 

  21. Gilbertson TA, Liu L, York DA, Bray GA. Dietary fat preferences are inversely correlated with peripheral gustatory fatty acid sensitivity. Ann N Y Acad Sci. 1998;855:165–8.

    CAS  PubMed  Google Scholar 

  22. Khan NA, Besnard P. Oro-sensory perception of dietary lipids: New insights into the fat taste transduction. Biochim Biophys Acta. 2009;1791(3):149–55.

    CAS  PubMed  Google Scholar 

  23. Newman L, Haryono R, Keast R. Functionality of fatty acid chemoreception: A potential factor in the development of obesity? Nutrients. 2013;5(4):1287–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Abumrad NA. CD36 may determine our desire for dietary fats. J Clin Invest. 2005;115(11):2965–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, et al. Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci. 2010;30(25):8376–82.

    CAS  PubMed  Google Scholar 

  26. Matsumura S, Eguchi A, Mizushige T, Kitabayashi N, Tsuzuki S, Inoue K, et al. Colocalization of GPR120 with phospholipase-Cbeta2 and alpha-gustducin in the taste bud cells in mice. Neurosci Lett. 2009;450(2):186–90.

    CAS  PubMed  Google Scholar 

  27. Pepino MY, Love-Gregory L, Klein S, Abumrad NA. The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. J Lipid Res. 2012;53(3):561–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen CS, Bench EM, Allerton TD, Schreiber AL, Arceneaux 3rd KP, Primeaux SD. Preference for linoleic acid in obesity-prone and obesity-resistant rats is attenuated by the reduction of CD36 on the tongue. Am J Physiol Regul Integr Comp Physiol. 2013;305(11):R1346–55.

    CAS  PubMed  Google Scholar 

  29. Mattes RD. Oral detection of short-, medium-, and long-chain free fatty acids in humans. Chem Senses. 2009;34(2):145–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rolls ET. Mechanisms for sensing fat in food in the mouth: Presented at the Symposium “The Taste for Fat: New Discoveries on the Role of Fat in Sensory Perception, Metabolism, Sensory Pleasure and Beyond” held at the Institute of Food Technologists 2011 Annual Meeting, New Orleans, LA, USA., June 12, 2011

  31. Grabenhorst F, Rolls ET. The representation of oral fat texture in the human somatosensory cortex. Hum Brain Mapp. 2014;35(6):2521–30.

    PubMed  Google Scholar 

  32. Stewart JE, Newman LP, Keast RS. Oral sensitivity to oleic acid is associated with fat intake and body mass index. Clin Nutr. 2011;30(6):838–44.

    CAS  PubMed  Google Scholar 

  33. Stewart JE, Seimon RV, Otto B, Keast RS, Clifton PM, Feinle-Bisset C. Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men. Am J Clin Nutr. 2011;93(4):703–11.

    CAS  PubMed  Google Scholar 

  34. Stewart JE, Feinle-Bisset C, Golding M, Delahunty C, Clifton PM, Keast RS. Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br J Nutr. 2010;104(1):145–52.

    CAS  PubMed  Google Scholar 

  35. Keast RS, Azzopardi KM, Newman LP, Haryono RY. Impaired oral fatty acid chemoreception is associated with acute excess energy consumption. Appetite. 2014;80:1–6.

    PubMed  Google Scholar 

  36. Little TJ, Feinle-Bisset C. Effects of dietary fat on appetite and energy intake in health and obesity–oral and gastrointestinal sensory contributions. Physiol Behav. 2011;104(4):613–20.

    CAS  PubMed  Google Scholar 

  37. Little TJ, Feinle-Bisset C. Oral and gastrointestinal sensing of dietary fat and appetite regulation in humans: Modification by diet and obesity. Front Neurosci. 2010;4:178.

    PubMed  PubMed Central  Google Scholar 

  38. Chevrot M, Bernard A, Ancel D, Buttet M, Martin C, Abdoul-Azize S, et al. Obesity alters the gustatory perception of lipids in the mouse: Plausible involvement of lingual CD36. J Lipid Res. 2013;54(9):2485–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chevrot M, Passilly-Degrace P, Ancel D, Bernard A, Enderli G, Gomes M, et al. Obesity interferes with the orosensory detection of long-chain fatty acids in humans. Am J Clin Nutr. 2014;99(5):975–83.

    CAS  PubMed  Google Scholar 

  40. Zhang XJ, Zhou LH, Ban X, Liu DX, Jiang W, Liu XM. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats. Acta Histochem. 2011;113(6):663–67.

    CAS  PubMed  Google Scholar 

  41. Stewart JE, Keast RS. Recent fat intake modulates fat taste sensitivity in lean and overweight subjects. Int J Obes (Lond). 2012;36(6):834–42.

    CAS  Google Scholar 

  42. Welch I, Saunders K, Read NW. Effect of ileal and intravenous infusions of fat emulsions on feeding and satiety in human volunteers. Gastroenterology. 1985;89(6):1293–7.

    CAS  PubMed  Google Scholar 

  43. Welch IM, Sepple CP, Read NW. Comparisons of the effects on satiety and eating behaviour of infusion of lipid into the different regions of the small intestine. Gut. 1988;29(3):306–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Drewe J, Gadient A, Rovati LC, Beglinger C. Role of circulating cholecystokinin in control of fat-induced inhibition of food intake in humans. Gastroenterology. 1992;102(5):1654–9.

    CAS  PubMed  Google Scholar 

  45. Greenberg D, Smith GP, Gibbs J. Intraduodenal infusions of fats elicit satiety in sham-feeding rats. Am J Physiol. 1990;259(1 Pt 2):R110–8.

    CAS  PubMed  Google Scholar 

  46. Yox DP, Stokesberry H, Ritter RC. Vagotomy attenuates suppression of sham feeding induced by intestinal nutrients. Am J Physiol. 1991;260(3 Pt 2):R503–8.

    CAS  PubMed  Google Scholar 

  47. Yox DP, Stokesberry H, Ritter RC. Fourth ventricular capsaicin attenuates suppression of sham feeding induced by intestinal nutrients. Am J Physiol. 1991;260(4 Pt 2):R681–7.

    CAS  PubMed  Google Scholar 

  48. Cox JE, Kelm GR, Meller ST, Randich A. Suppression of food intake by GI fatty acid infusions: Roles of celiac vagal afferents and cholecystokinin. Physiol Behav. 2004;82(1):27–33.

    CAS  PubMed  Google Scholar 

  49. Tamura CS, Ritter RC. Intestinal capsaicin transiently attenuates suppression of sham feeding by oleate. Am J Physiol. 1994;267(2 Pt 2):R561–8.

    CAS  PubMed  Google Scholar 

  50. Zittel TT, De Giorgio R, Sternini C, Raybould HE. Fos protein expression in the nucleus of the solitary tract in response to intestinal nutrients in awake rats. Brain Res. 1994;663(2):266–70.

    CAS  PubMed  Google Scholar 

  51. Covasa M, Ritter RC. Attenuated satiation response to intestinal nutrients in rats that do not express CCK-A receptors. Peptides. 2001;22(8):1339–48.

    CAS  PubMed  Google Scholar 

  52. Lieverse RJ, Jansen JB, Masclee AA, Rovati LC, Lamers CB. Effect of a low dose of intraduodenal fat on satiety in humans: Studies using the type a cholecystokinin receptor antagonist loxiglumide. Gut. 1994;35(4):501–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Matzinger D, Degen L, Drewe J, Meuli J, Duebendorfer R, Ruckstuhl N, et al. The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans. Gut. 2000;46(5):688–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schick RR, Harty GJ, Yaksh TL, Go VL. Sites in the brain at which cholecystokinin octapeptide (CCK-8) acts to suppress feeding in rats: A mapping study. Neuropharmacology. 1990;29(2):109–18.

    CAS  PubMed  Google Scholar 

  55. Blevins JE, Stanley BG, Reidelberger RD. Brain regions where cholecystokinin suppresses feeding in rats. Brain Res. 2000;860(1–2):1–10.

    CAS  PubMed  Google Scholar 

  56. Covasa M, Ritter RC. Rats maintained on high-fat diets exhibit reduced satiety in response to CCK and bombesin. Peptides. 1998;19(8):1407–15.

    CAS  PubMed  Google Scholar 

  57. Covasa M, Ritter RC. Reduced sensitivity to the satiation effect of intestinal oleate in rats adapted to high-fat diet. Am J Physiol. 1999;277(1 Pt 2):R279–85.

    CAS  PubMed  Google Scholar 

  58. Savastano DM, Covasa M. Adaptation to a high-fat diet leads to hyperphagia and diminished sensitivity to cholecystokinin in rats. J Nutr. 2005;135(8):1953–9.

    CAS  PubMed  Google Scholar 

  59. Covasa M, Ritter RC. Adaptation to high-fat diet reduces inhibition of gastric emptying by CCK and intestinal oleate. Am J Physiol Regul Integr Comp Physiol. 2000;278(1):R166–70.

    CAS  PubMed  Google Scholar 

  60. Covasa M, Grahn J, Ritter RC. High fat maintenance diet attenuates hindbrain neuronal response to CCK. Regul Pept. 2000;86(1–3):83–8.

    CAS  PubMed  Google Scholar 

  61. Covasa M, Grahn J, Ritter RC. Reduced hindbrain and enteric neuronal response to intestinal oleate in rats maintained on high-fat diet. Auton Neurosci. 2000;84(1–2):8–18.

    CAS  PubMed  Google Scholar 

  62. Greenberg D, McCaffery J, Potack JZ, Bray GA, York DA. Differential satiating effects of fats in the small intestine of obesity-resistant and obesity-prone rats. Physiol Behav. 1999;66(4):621–6.

    CAS  PubMed  Google Scholar 

  63. Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86(12):5992.

    CAS  PubMed  Google Scholar 

  64. Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89(5):1070–7.

    CAS  PubMed  Google Scholar 

  65. Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest. 1998;101(3):515–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gutzwiller JP, Göke B, Drewe J, Hildebrand P, Ketterer S, Handschin D, et al. Glucagon-like peptide-1: A potent regulator of food intake in humans. Gut. 1999;44(1):81–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349(10):941–8.

    CAS  PubMed  Google Scholar 

  68. Karra E, Chandarana K, Batterham RL. The role of peptide YY in appetite regulation and obesity. J Physiol. 2009;587(Pt 1):19–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Degen L, Drewe J, Piccoli F, Gräni K, Oesch S, Bunea R, et al. Effect of CCK-1 receptor blockade on ghrelin and PYY secretion in men. Am J Physiol Regul Integr Comp Physiol. 2007;292(4):R1391–9.

    CAS  PubMed  Google Scholar 

  70. Beglinger S, Drewe J, Schirra J, Göke B, D'Amato M, Beglinger C. Role of fat hydrolysis in regulating glucagon-like Peptide-1 secretion. J Clin Endocrinol Metab. 2010;95(2):879–86.

    CAS  PubMed  Google Scholar 

  71. Feinle-Bisset C, Patterson M, Ghatei MA, Bloom SR, Horowitz M. Fat digestion is required for suppression of ghrelin and stimulation of peptide YY and pancreatic polypeptide secretion by intraduodenal lipid. Am J Physiol Endocrinol Metab. 2005;289(6):E948–53.

    CAS  PubMed  Google Scholar 

  72. Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50(4):707–9.

    PubMed  Google Scholar 

  73. Druce MR, Wren AM, Park AJ, Milton JE, Patterson M, Frost G, et al. Ghrelin increases food intake in obese as well as lean subjects. Int J Obes (Lond). 2005;29(9):1130–6.

    CAS  Google Scholar 

  74. English PJ, Ghatei MA, Malik IA, Bloom SR, Wilding JP. Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metab. 2002;87(6):2984.

    CAS  PubMed  Google Scholar 

  75. le Roux CW, Patterson M, Vincent RP, Hunt C, Ghatei MA, Bloom SR. Postprandial plasma ghrelin is suppressed proportional to meal calorie content in normal-weight but not obese subjects. J Clin Endocrinol Metab. 2005;90(2):1068–71.

    PubMed  Google Scholar 

  76. Mittelman SD, Klier K, Braun S, Azen C, Geffner ME, Buchanan TA. Obese adolescents show impaired meal responses of the appetite-regulating hormones ghrelin and PYY. Obesity (Silver Spring). 2010;18(5):918–25.

    CAS  PubMed Central  Google Scholar 

  77. McFarlane MR, Brown MS, Goldstein JL, Zhao TJ. Induced Ablation of Ghrelin Cells in Adult Mice Does Not Decrease Food Intake, Body Weight, or Response to High-Fat Diet. Cell Metab. 2014 May 14

  78. le Roux CW, Batterham RL, Aylwin SJ, Patterson M, Borg CM, Wynne KJ, et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology. 2006;147(1):3–8.

    PubMed  Google Scholar 

  79. Guo Y, Ma L, Enriori PJ, Koska J, Franks PW, Brookshire T, et al. Delparigi A, Tataranni PA. Physiological evidence for the involvement of peptide YY in the regulation of energy homeostasis in humans. Obesity (Silver Spring). 2006;14(9):1562–70.

    CAS  Google Scholar 

  80. Boey D, Lin S, Enriquez RF, Lee NJ, Slack K, Couzens M, et al. PYY transgenic mice are protected against diet-induced and genetic obesity. Neuropeptides. 2008;42(1):19–30.

    CAS  PubMed  Google Scholar 

  81. Boey D, Lin S, Karl T, Baldock P, Lee N, Enriquez R, et al. Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity. Diabetologia. 2006;49(6):1360–70.

    CAS  PubMed  Google Scholar 

  82. Fineman MS, Cirincione BB, Maggs D, Diamant M. GLP-1 based therapies: Differential effects on fasting and postprandial glucose. Diabetes Obes Metab. 2012;14(8):675–88.

    CAS  PubMed  Google Scholar 

  83. Van Bloemendaal L, Ten Kulve JS, la Fleur SE, Ijzerman RG, Diamant M. Effects of glucagon-like peptide 1 on appetite and body weight: Focus on the CNS. J Endocrinol. 2014;221(1):T1–16.

    PubMed  Google Scholar 

  84. Piomelli D. A fatty gut feeling. Trends Endocrinol Metab. 2013;24(7):332–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hansen HS. Role of anorectic N-acylethanolamines in intestinal physiology and satiety control with respect to dietary fat. Pharmacol Res. 2014 Mar 28

  86. Rodríguez De Fonseca F, Navarro M, Gómez R, Escuredo L, Nava F, Fu J, et al. An anorexic lipid mediator regulated by feeding. Nature. 2001;414(6860):209–12.

    PubMed  Google Scholar 

  87. Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez De Fonseca F, et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature. 2003;425(6953):90–3.

    CAS  PubMed  Google Scholar 

  88. Schwartz GJ, Fu J, Astarita G, Li X, Gaetani S, Campolongo P, et al. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab. 2008;8(4):281–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Guijarro A, Fu J, Astarita G, Piomelli D. CD36 gene deletion decreases oleoylethanolamide levels in small intestine of free-feeding mice. Pharmacol Res. 2010;61(1):27–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Romano A, Karimian Azari E, Tempesta B, Mansouri A, Micioni Di Bonaventura MV, Ramachandran D, Lutz TA, Bedse G, Langhans W, Gaetani S. High dietary fat intake influences the activation of specific hindbrain and hypothalamic nuclei by the satiety factor oleoylethanolamide. Physiol Behav. 2014 May 5

  91. Oveisi F, Gaetani S, Eng KT, Piomelli D. Oleoylethanolamide inhibits food intake in free-feeding rats after oral administration. Pharmacol Res. 2004;49(5):461–6.

    CAS  PubMed  Google Scholar 

  92. Guzmán M, Lo Verme J, Fu J, Oveisi F, Blázquez C, Piomelli D. Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-alpha). J Biol Chem. 2004;279(27):27849–54.

    PubMed  Google Scholar 

  93. Fu J, Oveisi F, Gaetani S, Lin E, Piomelli D. Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese rats. Neuropharmacology. 2005;48(8):1147–53.

    CAS  PubMed  Google Scholar 

  94. Romano A, Coccurello R, Giacovazzo G, Bedse G, Moles A, Gaetani S. Oleoylethanolamide: a novel potential pharmacological alternative to cannabinoid antagonists for the control of appetite. Biomed Res Int. 2014;2014:203425.

    PubMed  PubMed Central  Google Scholar 

  95. Hansen HS, Diep TA. N-acylethanolamines, anandamide and food intake. Biochem Pharmacol. 2009;78(6):553–60.

    CAS  PubMed  Google Scholar 

  96. Diep TA, Madsen AN, Holst B, Kristiansen MM, Wellner N, Hansen SH, et al. Dietary fat decreases intestinal levels of the anorectic lipids through a fat sensor. FASEB J. 2011;25(2):765–74.

    CAS  PubMed  Google Scholar 

  97. Gillum MP, Zhang D, Zhang XM, Erion DM, Jamison RA, Choi C, et al. N-acylphosphatidylethanolamine, a gut- derived circulating factor induced by fat ingestion, inhibits food intake. Cell. 2008;135(5):813–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Wellner N, Tsuboi K, Madsen AN, Holst B, Diep TA, Nakao M, et al. Studies on the anorectic effect of N-acylphosphatidylethanolamine and phosphatidylethanolamine in mice. Biochim Biophys Acta. 2011;1811(9):508–12.

    CAS  PubMed  Google Scholar 

  99. Wellner N, Diep TA, Janfelt C, Hansen HS. N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochim Biophys Acta. 2013;1831(3):652–62.

    CAS  PubMed  Google Scholar 

  100. Mattes RD. Oral fatty acid signaling and intestinal lipid processing: Support and supposition. Physiol Behav. 2011;105(1):27–35. Review.

    CAS  PubMed  Google Scholar 

  101. Schwartz GJ. Gut fat sensing in the negative feedback control of energy balance–recent advances. Physiol Behav. 2011;104(4):621–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee CY. The effect of high-Fat diet-induced pathophysiological changes in the Gut on obesity: what should be the ideal treatment? Clin Transl Gastroenterol. 2013;4:e39.

    Google Scholar 

  103. Breen DM, Rasmussen BA, Côté CD, Jackson VM, Lam TK. Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes. Diabetes. 2013;62(9):3005–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Greenberg D, Smith GP, Gibbs J. Intravenous triglycerides fail to elicit satiety in sham-feeding rats. Am J Physiol. 1993;264(2 Pt 2):R409–13.

    CAS  PubMed  Google Scholar 

  105. Greenberg D, Kava RA, Lewis DR, Greenwood MR, Smith GP. Time course for entry of intestinally infused lipids into blood of rats. Am J Physiol. 1995;269(2 Pt 2):R432–6.

    CAS  PubMed  Google Scholar 

  106. Woods SC, Stein LJ, McKay LD, Porte Jr D. Suppression of food intake by intravenous nutrients and insulin in the baboon. Am J Physiol. 1984;247:R393.

    CAS  PubMed  Google Scholar 

  107. Walls EK, Koopmans HS. Effect of intravenous nutrient infusions on food intake in rats. Physiol Behav. 1989;45:1223.

    CAS  PubMed  Google Scholar 

  108. Gil KM, Skeie B, Kretan V, Askanazi J, Friedman MI. Parenteral nutrition and oral intake: Effect of glucose and fat infusion. JPEN. 1991;15:426.

    CAS  Google Scholar 

  109. Giner M, Meguid MM. Effect of intravenous or intragstric nutrients on food intake in rats. J Surg Res. 1991;51:259.

    CAS  PubMed  Google Scholar 

  110. Walls EK, Koopmans HS. Differential effects of intravenous glucose, amino acids, and lipid on daily food intake in rats. Am J Physiol. 1992;262(2 Pt 2):R225–34.

    CAS  PubMed  Google Scholar 

  111. Fantino M. Role of lipids in the control of food intake. Curr Opin Clin Nutr Metab Care. 2011;14(2):138–44.

    CAS  PubMed  Google Scholar 

  112. Lam TK, Pocai A, Gutierrez-Juarez R, et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med. 2005;11:320–7.

    CAS  PubMed  Google Scholar 

  113. Le Foll C, Irani BG, Magnan C, Dunn-Meynell AA, Levin BE. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R655–64.

    PubMed  PubMed Central  Google Scholar 

  114. Le Foll C, Dunn-Meynell A, Musatov S, Magnan C, Levin BE. FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice. Diabetes. 2013;62(8):2709–16.

    PubMed  PubMed Central  Google Scholar 

  115. Moullé VS, Picard A, Le Foll C, Levin BE, Magnan C. Lipid sensing in the brain and regulation of energy balance. Diabetes Metab. 2014;40(1):29–33.

    PubMed  Google Scholar 

  116. Miller JC, Gnaedinger JM, Rapoport SI. Utilization of plasma fatty acid in rat brain: Distribution of [14C] palmitate between oxidative and synthetic pathways. J Neurochem. 1987;49(5):1507–14.

    CAS  PubMed  Google Scholar 

  117. Gnaedinger JM, Miller JC, Latker CH, Rapoport SI. Cerebral metabolism of plasma [14C] palmitate in awake, adult rat: Subcellular localization. Neurochem Res. 1988;13(1):21–9.

    CAS  PubMed  Google Scholar 

  118. Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes. 2002;51:271–5.

    CAS  PubMed  Google Scholar 

  119. Schwinkendorf DR, Tsatsos NG, Gosnell BA, Mashek DG. Effects of central administration of distinct fatty acids on hypothalamic neuropeptide expression and energy metabolism. Int J Obes (Lond). 2011;35(3):336–44.

    CAS  Google Scholar 

  120. Ross RA, Rossetti L, Lam TK, Schwartz GJ. Differential effects of hypothalamic long-chain fatty acid infusions on suppression of hepatic glucose production. Am J Physiol Endocrinol Metab. 2010;299(4):E633–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Jambor De Sousa UL, Benthem L, Arsenijevic D, Scheurink AJ, Langhans W, Geary N, et al. Hepatic-portal oleic acid inhibits feeding more potently than hepatic-portal caprylic acid in rats. Physiol Behav. 2006;89(3):329–34.

    CAS  PubMed  Google Scholar 

  122. Librán-Pérez M, Polakof S, López-Patiño MA, Míguez JM, Soengas JL. Evidence of a metabolic fatty acid-sensing system in the hypothalamus and brockmann bodies of rainbow trout: Implications in food intake regulation. Am J Physiol Regul Integr Comp Physiol. 2012;302(11):R1340–50.

    PubMed  Google Scholar 

  123. Librán-Pérez M, López-Patiño MA, Míguez JM, Soengas JL. Oleic acid and octanoic acid sensing capacity in rainbow trout Oncorhynchus mykiss is direct in hypothalamus and Brockmann bodies. PLoS One. 2013;8(3):e59507.

    PubMed  PubMed Central  Google Scholar 

  124. Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL. Central administration of oleate or octanoate activates hypothalamic fatty acid sensing and inhibits food intake in rainbow trout. Physiol Behav. 2014;129:272–9.

    PubMed  Google Scholar 

  125. Oh YT, Youn JH. Circulating oleate, but not other free fatty acids, suppresses food intake in Wistar rats. Diabetes. 2014;63:A471.

    Google Scholar 

  126. Reynaert R, De Paepe M, Marcus S, Peeters G. Influence of serum free fatty acid levels on growth hormone secretion in lactating cows. J Endocrinol. 1975;66:213–24.

    CAS  PubMed  Google Scholar 

  127. Kreitschmann-Andermahr I, Suarez P, Jennings R, Evers N, Brabant G. GH/IGF-I regulation in obesity–mechanisms and practical consequences in children and adults. Horm Res Paediatr. 2010;73:153–60.

    CAS  PubMed  Google Scholar 

  128. Briard N, Rico-Gomez M, Guillaume V, Sauze N, Vuaroqueaux V, Dadoun F, et al. Hypothalamic mediated action of free fatty acid on growth hormone secretion in sheep. Endocrinology. 1998;139:4811–9.

    CAS  PubMed  Google Scholar 

  129. Quabbe HJ, Luyckx AS, L’age M, Schwarz C. Growth hormone, cortisol, and glucagon concentrations during plasma free fatty acid depression: different effects of nicotinic acid and an adenosine derivative (BM 11.189). J Clin Endocrinol Metab. 1983;57:410–4.

    CAS  PubMed  Google Scholar 

  130. Watt MJ, Holmes AG, Steinberg GR, Mesa JL, Kemp BE, Febbraio MA. Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;287:E120–7.

    CAS  PubMed  Google Scholar 

  131. Pereira JN. The plasma free fatty acid rebound induced by nicotinic acid. J Lipid Res. 1967;8:239–44.

    CAS  PubMed  Google Scholar 

  132. Oh YT, Oh KS, Kang I, Youn JH. A fall in plasma free fatty acid (FFA) level activates the hypothalamic-pituitary-adrenal axis independent of plasma glucose: Evidence for brain sensing of circulating FFA. Endocrinology. 2012;153(8):3587–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Oh YT, Kim J, Kang I, Youn JH. Regulation of hypothalamic-pituitary-adrenal axis by circulating free fatty acids in male Wistar rats: Role of individual free fatty acids. Endocrinology. 2014;155(3):923–31.

    PubMed  Google Scholar 

  134. Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134(6):933–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Yang ZH, Miyahara H, Hatanaka A. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes. Lipids Health Dis. 2011;10:120.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Stefan N, Kantartzis K, Celebi N, Staiger H, Machann J, Schick F, et al. Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care. 2010;33(2):405–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Mozaffarian D, Cao H, King IB, Lemaitre RN, Song X, Siscovick DS, et al. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am J Clin Nutr. 2010;92(6):1350–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Yang ZH, Takeo J, Katayama M. Oral administration of omega-7 palmitoleic acid induces satiety and the release of appetite-related hormones in male rats. Appetite. 2013;65:1–7.

    CAS  PubMed  Google Scholar 

  139. Gong J, Campos H, McGarvey S, Wu Z, Goldberg R, Baylin A. Adipose tissue palmitoleic acid and obesity in humans: Does it behave as a lipokine? Am J Clin Nutr. 2011;93(1):186–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Hodson L, Karpe F. Is there something special about palmitoleate? Curr Opin Clin Nutr Metab Care. 2013;16(2):225–31.

    CAS  PubMed  Google Scholar 

  141. Huber AH, Kampf JP, Kwan T, Zhu B, Kleinfeld AM. Fatty acid-specific fluorescent probes and their use in resolving mixtures of unbound free fatty acids in equilibrium with albumin. Biochemistry. 2006;45:14263–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Watt MJ, Hoy AJ, Muoio DM, Coleman RA. Distinct roles of specific fatty acids in cellular processes: Implications for interpreting and reporting experiments. Am J Physiol Endocrinol Metab. 2012;302:E1–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Hummel L. Studies on the metabolism of free fatty acids of the plasma in non-pregnant female and pregnant rats. Acta Biol Med Ger. 1975;34(4):607–11.

    CAS  PubMed  Google Scholar 

  144. Nelson RH, Mundi MS, Vlazny DT, Smailovic A, Muthusamy K, Almandoz JP, et al. Kinetics of saturated, monounsaturated, and polyunsaturated fatty acids in humans. Diabetes. 2013;62(3):783–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bezman-Tarcher A. Method for continuous intravenous infusion of large amounts of oleic acid into rats. J Lipid Res. 1969;10(2):197–206.

    CAS  PubMed  Google Scholar 

  146. Gould S, Scott RC. 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review. Food Chem Toxicol. 2005;43(10):1451–9.

    CAS  PubMed  Google Scholar 

  147. Schuster DP. ARDS: clinical lessons from the oleic acid model of acute lung injury. Am J Respir Crit Care Med. 1994;149(1):245–60.

    CAS  PubMed  Google Scholar 

  148. Richieri GV, Anel A, Kleinfeld AM. Interactions of long-chain fatty acids and albumin: determination of free fatty acid levels using the fluorescent probe ADIFAB. Biochemistry. 1993;32(29):7574–80.

    CAS  PubMed  Google Scholar 

  149. Nivala AM, Reese L, Frye M, Gentile CL, Pagliassotti MJ. Fatty acid-mediated endoplasmic reticulum stress in vivo: differential response to the infusion of Soybean and Lard Oil in rats. Metabolism. 2013;62(5):753–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Morgan K, Obici S, Rossetti L. Hypothalamic responses to long-chain fatty acids are nutritionally regulated. J Biol Chem. 2004;279:31139–48.

    CAS  PubMed  Google Scholar 

  151. Pocai A, Lam TK, Obici S, et al. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J Clin Invest. 2006;116:1081–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.

    CAS  PubMed  Google Scholar 

  153. Coleman DL. A historical perspective on leptin. Nat Med. 2010;16(10):1097–9.

    CAS  PubMed  Google Scholar 

  154. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MS, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–5.

    CAS  PubMed  Google Scholar 

  155. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, et al. Leptin levels in human and rodent: Measurement of plasma leptin and ob mRNA in obese and weight reduced subjects. Nat Med. 1995;1:1155–61.

    CAS  PubMed  Google Scholar 

  156. Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS. Leptin levels reflect body lipid content in mice: Evidence for diet-induced resistance to leptin action. Nat Med. 1995;1:1311–4.

    CAS  PubMed  Google Scholar 

  157. Munzberg H. Leptin-signaling pathways and leptin resistance. Forum Nutr. 2010;63:123–32.

    CAS  PubMed  Google Scholar 

  158. Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008;70:537–56.

    CAS  PubMed  Google Scholar 

  159. Morris DL, Rui L. Recent advances in understanding Leptin signaling and Leptin resistance. Am J Physiol Endocrinol Metab. 2009;297:E1247–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Seeley RJ, Woods SC. Monitoring of stored and available fuel by the CNS: Implications for obesity. Nat Rev Neurosci. 2003;4(11):901–9.

    CAS  PubMed  Google Scholar 

  161. Lin L, Martin R, Schaffhauser AO, York DA. Acute changes in the response to peripheral leptin with alteration in diet composition. Am J Physiol Regul Integr Comp Physiol. 2001;280:R504–9.

    CAS  PubMed  Google Scholar 

  162. Wang J, Obici S, Morgan K, Barzilai N, Feng Z, Rossetti L. Overfeeding rapidly induces leptin and insulin resistance. Diabetes. 2001;50:2786–91.

    CAS  PubMed  Google Scholar 

  163. Myers Jr MG, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: Distinguishing cause from effect. Trends Endocrinol Metab. 2010;21(11):643–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Thaler JP, Guyenet SJ, Dorfman MD, Wisse BE, Schwartz MW. Hypothalamic inflammation: Marker or mechanism of obesity pathogenesis? Diabetes. 2013;62(8):2629–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Scarpace PJ, Zhang Y. Leptin resistance: A predisposing factor for diet-induced obesity. Am J Physioql Regul Comp Physiol. 2009;296:R493–500.

    CAS  Google Scholar 

  166. El-Haschimi K, Pierroz DD, Hileman SM, Bjørbæk C, Flier JS. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest. 2000;105:1827–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Banks WA. The blood–brain barrier as a cause of obesity. Curr Pharm Des. 2008;14:1606–14.

    CAS  PubMed  Google Scholar 

  168. Velloso LA, Schwartz MW. Altered hypothalamic function in diet-induced obesity. Int J Obes (Lond). 2011;35(12):1455–65.

    CAS  Google Scholar 

  169. Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides. 1996;17:305–11.

    CAS  PubMed  Google Scholar 

  170. Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, et al. Triglycerides induce leptin resistance at the blood–brain barrier. Diabetes. 2004;53(5):1253–60.

    CAS  PubMed  Google Scholar 

  171. Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: A possible mechanism for leptin resistance. Lancet. 1996;348:159–61.

    CAS  PubMed  Google Scholar 

  172. Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte Jr D. Cerebrospinal fluid leptin levels: Relationship to plasma levels and adiposity in humans. Nat Med. 1996;2:589–93.

    CAS  PubMed  Google Scholar 

  173. Shapiro A, Mu W, Roncal CA, Cheng KY, Johnson RJ, Scarpace PJ. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high fat feeding. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1370–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Vasselli JR, Scarpace PJ, Harris RB, Banks WA. Dietary components in the development of leptin resistance. Adv Nutr. 2013;4(2):164–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Adam CL, Findlay PA. Decreased blood–brain leptin transfer in an ovine model of obesity and weight loss: Resolving the cause of leptin resistance. Int J Obes (Lond). 2010;34(6):980–8.

    CAS  Google Scholar 

  176. Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers Jr MG, et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: A key mediator of insulin-induced anorexia. Diabetes. 2003;52:227–31.

    CAS  PubMed  Google Scholar 

  177. Polonsky KS, Given BD, Hirsch L, Shapiro ET, Tillil H, Beebe C, et al. Quantitative study of insulin secretion and clearance in normal and obese subjects. J Clin Invest. 1988;81(2):435–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Heni M1, Schöpfer P, Peter A, Sartorius T, Fritsche A, Synofzik M, Häring HU, Maetzler W, Hennige AM. Evidence for altered transport of insulin across the blood–brain barrier in insulin-resistant humans. Acta Diabetol. 2013 Dec 27

  179. Mayer J. Glucostatic mechanism of regulation of food intake. N Engl J Med. 1953;249(1):13–6.

    CAS  PubMed  Google Scholar 

  180. Ritter S, Taylor JS. Capsaicin abolishes lipoprivic but not glucoprivic feeding in rats. Am J Physiol. 1989;256(6 Pt 2):R1232–9.

    CAS  PubMed  Google Scholar 

  181. Leonhardt M, Langhans W. Fatty acid oxidation and control of food intake. Physiol Behav. 2004;83(4):645–51.

    CAS  PubMed  Google Scholar 

  182. Scharrer E. Control of food intake by fatty acid oxidation and ketogenesis. Nutrition. 1999;15(9):704–14.

    CAS  PubMed  Google Scholar 

  183. Langhans W, Leitner C, Arnold M. Dietary fat sensing via fatty acid oxidation in enterocytes: possible role in the control of eating. Am J Physiol Regul Integr Comp Physiol. 2011;300(3):R554–65.

    CAS  PubMed  Google Scholar 

  184. Karimian Azari E, Leitner C, Jaggi T, Langhans W, Mansouri A. Possible role of intestinal fatty acid oxidation in the eating-inhibitory effect of the PPAR-α agonist Wy-14643 in high-fat diet fed rats. PLoS One. 2013;8(9):e74869.

    PubMed  PubMed Central  Google Scholar 

  185. Clegg DJ, Gotoh K, Kemp C, Wortman MD, Benoit SC, Brown LM, et al. Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav. 2011;103(1):10–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Pimentel GD, Dornellas AP, Rosa JC, Lira FS, Cunha CA, Boldarine VT, et al. High-fat diets rich in soy or fish oil distinctly alter hypothalamic insulin signaling in rats. J Nutr Biochem. 2012;23(7):822–8.

    CAS  PubMed  Google Scholar 

  187. Olofsson LE, Unger EK, Cheung CC, Xu AW. Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance. Proc Natl Acad Sci U S A. 2013;110(8):E697–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Duca FA, Swartz TD, Sakar Y, Covasa M. Decreased intestinal nutrient response in diet-induced obese rats: role of gut peptides and nutrient receptors. Int J Obes (Lond). 2013;37(3):375–81.

    CAS  Google Scholar 

  189. De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146(10):4192–9.

    PubMed  Google Scholar 

  190. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135(1):61–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Oh-I S, Thaler JP, Ogimoto K, Wisse BE, Morton GJ, Schwartz MW. Central administration of interleukin-4 exacerbates hypothalamic inflammation and weight gain during high-fat feeding. Am J Physiol Endocrinol Metab. 2010;299(1):E47–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Chiarreotto-Ropelle EC, Pauli LS, Katashima CK, Pimentel GD, Picardi PK, Silva VR, et al. Acute exercise suppresses hypothalamic PTP1B protein level and improves insulin and leptin signaling in obese rats. Am J Physiol Endocrinol Metab. 2013;305(5):E649–59.

    CAS  PubMed  Google Scholar 

  193. Weissmann L, Quaresma PG, Santos AC, de Matos AH, D'Ávila Bittencourt Pascoal V, Zanotto TM, Castro G, Guadgnini D, Martins da Silva J, Velloso LA, Bittencourt JC, Lopes-Cendes I, Saad MJ, Prada PO. IKK epsilon is key to induction of insulin resistance in the hypothalamus and its inhibition reverses obesity. Diabetes. 2014 May 8

  194. Ropelle ER, Flores MB, Cintra DE, Rocha GZ, Pauli JR, Morari J, et al. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS Biol. 2010;24:8(8).

    Google Scholar 

  195. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Cintra DE, Ropelle ER, Moraes JC, Pauli JR, Morari J, Souza CT, et al. Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS One. 2012;7(1):e30571.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A, et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab. 2009;296:E1003–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S, et al. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest. 2009;119(9):2577–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Guyenet SJ, Nguyen HT, Hwang BH, Schwartz MW, Baskin DG, Thaler JP. High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes. Brain Res. 2013;1512:97–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Gao Y, Ottaway N, Schriever SC, Legutko B, García-Cáceres C, de la Fuente E, et al. Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia. 2014;62(1):17–25.

    PubMed  PubMed Central  Google Scholar 

  201. Ouyang S, Hsuchou H, Kastin AJ, Wang Y, Yu C, Pan W. Diet-induced obesity suppresses expression of many proteins at the blood–brain barrier. J Cereb Blood Flow Metab. 2014;34(1):43–51.

    CAS  PubMed  Google Scholar 

  202. Takechi R, Galloway S, Pallebage-Gamarallage MM, Wellington CL, Johnsen RD, Dhaliwal SS, et al. Differential effects of dietary fatty acids on the cerebral distribution of plasma-derived apo B lipoproteins with amyloid-beta. Br J Nutr. 2010;103(5):652–62.

    CAS  PubMed  Google Scholar 

  203. Hsuchou H, Kastin AJ, Pan W. Blood-borne metabolic factors in obesity exacerbate injury-induced gliosis. J Mol Neurosci. 2012;47(2):267–77.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank Dr. Joyce Richey at USC Keck School of Medicine for her critical reading of the manuscript. This work was supported by Basic Science Award #7-12-BS-214 from the American Diabetes Association.

Conflict of interest

I have no conflicts of interest to disclose in connection with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang H. Youn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youn, J.H. Fat sensing and metabolic syndrome. Rev Endocr Metab Disord 15, 263–275 (2014). https://doi.org/10.1007/s11154-014-9300-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-014-9300-1

Keywords

Navigation