The Ramanujan Journal

, Volume 24, Issue 1, pp 67–83

Singular values of some modular functions


    • Faculty of Liberal Arts and SciencesOsaka Prefecture University
  • Maho Kobayashi
    • Graduate School of ScienceOsaka Prefecture University

DOI: 10.1007/s11139-010-9249-y

Cite this article as:
Ishii, N. & Kobayashi, M. Ramanujan J (2011) 24: 67. doi:10.1007/s11139-010-9249-y


For an integer N greater than 5 and a triple \({\mathfrak{a}}=[a_{1},a_{2},a_{3}]\) of integers with the properties 0<aiN/2 and aiaj for ij, we consider a modular function \(W_{\mathfrak{a}}(\tau)=\frac{\wp (a_{1}/N;L_{\tau})-\wp (a_{3}/N;L_{\tau})}{\wp (a_{2}/N;L_{\tau})-\wp(a_{3}/N;L_{\tau})}\) for the modular group Γ1(N), where ℘(z;Lτ) is the Weierstrass ℘-function relative to the lattice Lτ generated by 1 and a complex number τ with positive imaginary part. For a pair of such triples \({\mathfrak{A}}=[{\mathfrak{a}},{\mathfrak{b}}]\) and a pair of non-negative integers F=[m,n], we define a modular function \(T_{{\mathfrak{A}},F}\) for the group Γ0(N) as the trace of the product \(W_{\mathfrak{a}}^{m}W_{\mathfrak{b}}^{n}\) to the modular function field of Γ0(N). In this article, we study the integrality of singular values of the functions \(W_{\mathfrak{a}}\) and \(T_{{\mathfrak{A}},F}\) by using their modular equations. We prove that the functions \(T_{{\mathfrak{A}},F}\) for suitably chosen \({\mathfrak{A}}\) and F generate the modular function field of Γ0(N), and from Shimura reciprocity and Gee–Stevenhagen method we obtain that singular values \(T_{{\mathfrak{A}},F}(\tau)\) for suitably chosen \({\mathfrak{A}}\) and F generate ring class fields. Further, we study the class polynomial of \(T_{{\mathfrak{A}},F}\) for Schertz N-system.


Singular valueModular formModular equation

Mathematics Subject Classification (2000)


Copyright information

© Springer Science+Business Media, LLC 2010