Skip to main content
Log in

Identities for the harmonic numbers and binomial coefficients

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We extend some results of Euler related sums. Integral and closed-form representations of sums with products of harmonic numbers and binomial coefficients are developed in terms of Polygamma functions. The various representations presented in this paper are believed to be new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alzer, H., Karayannakis, D., Srivastava, H.M.: Series representations of some mathematical constants. J. Math. Anal. Appl. 320, 145–162 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Basu, A.: A new method in the study of Euler sums. Ramanujan J. 16, 7–24 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Basu, A., Apostol, T.M.: A new method for investigating Euler sums. Ramanujan J. 4, 397–419 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borwein, D., Borwein, J., Girgensohn, R.: Explicit evaluation of Euler sums. Proc. Edinb. Math. Soc. (Ser. 2) 38, 277–294 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, X., Chu, W.-C.: Dixon’s 3 F 2(1)-series and identities involving harmonic numbers and the Riemann Zeta function. Discrete Math. 310, 83–94 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Choi, J., Cvijović, D.: Values of the polygamma functions at rational arguments. J. Phys. A: Math. Theor. 40, 15019–15028 (2007)

    Article  MATH  Google Scholar 

  7. Choi, J., Srivastava, H.M.: Explicit evaluation of Euler and related sums. Ramanujan J. 10, 51–70 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Choi, J., Srivastava, H.M.: Some applications of the Gamma and polygamma functions involving convolutions of the Rayleigh functions, multiple Euler sums and log-sine integrals. Math. Nachr. 282, 1709–1723 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chu, W.-C., Fu, A.M.: Dougall–Dixon formula and harmonic number identities. Ramanujan J. 18, 11–31 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Euler, L.: Opera Omnia, Ser. 1, vol. 15. Teubner, Berlin (1917)

    Google Scholar 

  11. Flajolet, P., Salvy, B.: Euler sums and contour integral representations. Exp. Math. 7, 15–35 (1998)

    MATH  MathSciNet  Google Scholar 

  12. Kölbig, K.: The polygamma function ψ(x) for x=1/4 and x=3/4. J. Comput. Appl. Math. 75, 43–46 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kölbig, K.: The polygamma function and the derivatives of the cotangent function for rational arguments. CERN-IT-Reports CERN-CN, pp. 96–005 (1996)

  14. Krattenthaler, C., Rao, K.S.: Automatic generation of hypergeometric identities by the beta integral method. J. Comput. Math. Appl. 160, 159–173 (2003)

    Article  MATH  Google Scholar 

  15. Nielsen, N.: Die Gammafunktion. Chelsea, New York (1965)

    Google Scholar 

  16. Petojević, A., Srivastava, H.M.: Computation of Euler’s type sums of the products of Bernoulli numbers. Appl. Math. Lett. 22, 796–801 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rassias, T.M., Srivastava, H.M.: Some classes of infinite series associated with the Riemann Zeta and Polygamma functions and generalized harmonic numbers. Appl. Math. Comput. 131, 593–605 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sofo, A.: Computational Techniques for the Summation of Series. Kluwer Academic/(Plenum), New York (2003)

    MATH  Google Scholar 

  19. Sofo, A.: Integral forms of sums associated with harmonic numbers. Appl. Math. Comput. 207, 365–372 (2009)

    Article  MATH  Google Scholar 

  20. Sofo, A.: Sums of derivatives of binomial coefficients. Adv. Appl. Math. 42, 123–134 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sofo, A.: Harmonic numbers and double binomial coefficients. Integral Transforms Spec. Funct. 20, 847–857 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sondow, J., Weisstein, E.W.: Harmonic number, From MathWorld: A Wolfram Web Rescources; http://mathworld.wolfram.com/HarmonicNumber.html

  23. Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht/Boston/London (2001)

    MATH  Google Scholar 

  24. Wolfram Research Incorporated: Mathematica. Wolfram Research Incorporated, Champaign (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sofo, A., Srivastava, H.M. Identities for the harmonic numbers and binomial coefficients. Ramanujan J 25, 93–113 (2011). https://doi.org/10.1007/s11139-010-9228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-010-9228-3

Keywords

Mathematics Subject Classification (2000)

Navigation