1.

V.S. Adamchik and H.M. Srivastava, “Some series of the zeta and related functions,”

*Analysis* **18**(1998), 131–144.

MathSciNet2.

D.H. Bailey, J.M. Borwein, and R. Girgensohn, “Experimental evaluation of euler sums,”

*Experimental Math.* **3** (1994), 17–30.

MathSciNet3.

A. Basu and T.M. Apostol, “A new method for investigating euler sums,”

*Ramanujan J.* **4** (2000), 397–419

CrossRefMathSciNet4.

B.C. Berndt, *Ramanujan's Notebooks, Part I*, Springer-Verlag, New York, Berlin, Heidelberg, and Tokyo, 1985.

5.

D. Borwein and J.M. Borwein, “On an intriguing integral and some series related to ζ(4),”

*Proc. Amer. Math. Soc.* **123** (1995), 1191–1198

MathSciNet6.

D. Borwein, J.M. Borwein, and R. Girgensohn, “Explicit evaluation of euler sums,”

*Proc. Edinburgh Math. Soc.* (

*Ser*. 2)

**38** (1995), 277–294

MathSciNet7.

J.M. Borwein and R. Girgensohn, “Evaluation of triple euler sums,”

*Electron. J. Combin.* **3**(1) (1996), Research Paper 23, 27 pp. (electronic).

MathSciNet8.

D. Bowman and D.M. Bradley, “Multiple Polylogarithms: A brief survey,” in *q-Series with Applications to Combinatorics*, *Number Theory*, *and Physics* (Papers from the Conference held at the University of Illinois, Urbana, Illinois; October 26–28, 2000) (B.C. Berndt and K.Ono, eds), *Contemporary Mathematics* **291**, American Mathematical Society, Providence, Rhode Island, (2001), pp. 71–92.

9.

P. Bracken, “Euler's formula for zeta function convolutions,”

*Amer. Math. Monthly* **108** (2001), 771–778.

MathSciNet10.

J. Choi and T.Y. Seo “Evaluation ofsome infinite series,”

*Indian J. Pure Appl. Math.* **28** (1997), 791–796.

MathSciNet11.

J. Choi and H.M. Srivastava, “Certain classes of infinite series,”

*Monatsh. Math.* **127** (1999), 15–25.

CrossRefMathSciNet12.

J. Choi, H.M. Srivastava, and Y. Kim, “Applications of a certain family of hypergeometric summationformulas associated with Psi and zeta functions,”

*Comm. Korean Math. Soc.* **16** (2001),319–332.

MathSciNet13.

J. Choi, H.M. Srivastava, T.Y. Seo, and A.K. Rathie, “Some families of infinite series,”

*Soochow J. Math.* **25** (1999), 209–219.

MathSciNet14.

L. Comtet, “Advanced Combinatorics: The Art of Finite and Infinite Expansions” Translated from the French by J. W. Nienhuys (Reidel, Dordrecht and Boston 1974).

15.

R.E. Crandall and J.P. Buhler, “On the evaluation of euler sums,”

*Experimental Math.* **3**(1994), 275–285.

MathSciNet16.

P.J. de Doelder, “On some series containing ψ (x)-ψ (y) and ψ (x)-ψ (y))2 for certainvalues of x and y,”

*J. Comput. Appl. Math.* **37** (1991), 125–141.

MathSciNetMATH17.

P. Flajolet and B. Salvy, “Euler sums and contour integral representations,”

*Experimental Math.* **7** (1998), 15–35.

MathSciNet18.

M.E. Hoffman, “Multiple harmonic series,”

*Pacific J. Math.* **152** (1992), 275–290.

MathSciNetMATH19.

Y. Kim, “Infinite series associated withpsi and zeta functions,”

*Honam Math. J.* **22** (2000), 53–60.

MathSciNetMATH20.

L. Lewin, *Polylogarithms and associated functions*, Elsevier, North-Holland, New York, London, and Amsterdam 1981.

21.

C. Markett, {“Triple sums and the Riemann Zeta function,”}

*J. Number Theory* **48** (1994), 113–132.

CrossRefMathSciNetMATH22.

N. Nielsen, *Die Gammafunktion*, Chelsea Publishing Company, (Bronx, New York 1965).

23.

G. Pólya and G. Szegö, “Problems and Theorems in Analysis,” (Translated from the German by D.Aeppli), Vol. I (Springer-Verlag, New York, Heidelberg, and Berlin, 1972).

24.

E.D. Rainville, *Special Functions*, Macmillan Company, New York, (1960).

25.

Th. M. Rassias and H.M. Srivastava, “Some classes of infinite series associated with the riemann zetaand polygamma functions and generalized harmonic numbers,”

*Appl. Math. Comput.* **131** 593–605, 2002

CrossRefMathSciNet26.

L.-C. Shen, “Remarks on some integrals and series involving the stirling numbers and ζ(n),”

*Trans. Amer. Math. Soc.* **347** (1995), 1391–1399.

MathSciNetMATH27.

R. Sitaramachandrarao, “A formula of S.Ramanujan,”

*J. Number Theory* **25** (1987), 1–19.

CrossRefMathSciNetMATH28.

R. Sitaramachandrarao and A. Sivaramsarma,

*Some identities involving the riemann zeta function*,

*Indian J. Pure Appl. Math.* **10** (1979), 602–607.

MathSciNet29.

R. Sitaramachandrarao and A. Sivaramsarma, Two identities due to Ramanujan,

*Indian J. Pure Appl. Math.* **11** (1980), 1139–1140.

MathSciNet30.

R. Sitaramachandrarao and M.V. Subbarao, “Transformation formulae for multiple series,”

*Pacific J. Math.* **113** (1984) 471–479.

MathSciNet31.

H.M. Srivastava and, J. Choi, *Series Associated with the Zeta and Related Functions*, Kluwer Academic Publishers, Dordrecht, Boston, and London, (2001).

32.

E.T. Whittaker and G.N. Watson, *A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Accountof the Principal Transcendental Functions*, Fourth ed. Cambridge University Press, Cambridge, London, and New York, (1963).

33.

G.T. Williams “A New method of Evaluating ζ (2n),”

*Amer. Math. Monthly*,

**60**(1953), 19–25.

MathSciNetMATH34.

D. Zagier, “Values of zeta functions andtheir applications,” *First European Congress of Mathematics*, Vol. II (Paris, 1992) (A. Joseph, F. Mignot, F. Murat, B. Prum, and R. Rentschler, eds.),*Progress in Mathematics* **120** (1994) 497–512.Birkhäuser, Basel.