Skip to main content
Log in

Two different types of optical hybrid qubits for teleportation in a lossy environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the performance of quantum teleportation under a lossy environment using two different types of optical hybrid qubits. One is the hybrid of a polarized single-photon qubit and a coherent-state qubit (type-I logical qubit), and the other is the hybrid of a qubit of the vacuum and the single-photon and a coherent-state qubit (type-II logical qubit). We show that type-II hybrid qubits are generally more robust to photon loss effects compared to type-I hybrid qubits with respect to fidelities and success probabilities of quantum teleportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  3. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photonics 9, 641–652 (2015)

    Article  ADS  Google Scholar 

  4. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature (London) 402, 390–393 (1999)

    Article  ADS  Google Scholar 

  5. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46–52 (2001)

    Article  ADS  MATH  Google Scholar 

  6. Dawson, C.M., Haselgrove, H.L., Nielsen, M.A.: Noise thresholds for optical cluster-state quantum computation. Phys. Rev. A 73, 052306 (2006)

    Article  ADS  Google Scholar 

  7. Hayes, A.J.F., Haselgrove, H.L., Gilchrist, A., Ralph, T.C.: Fault tolerance in parity-state linear optical quantum computing. Phys. Rev. A 82, 022323 (2010)

    Article  ADS  Google Scholar 

  8. Lund, A.P., Ralph, T.C., Haselgrove, H.L.: Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2008)

    Article  ADS  Google Scholar 

  9. Ralph, T.C., Pryde, G.J.: Optical quantum computation. Prog. Opt. 54, 209–269 (2010)

    Article  Google Scholar 

  10. Lee, H.-W., Kim, J.: Quantum teleportation and Bell’s inequality using single-particle entanglement. Phys. Rev. A 63, 012305 (2000)

    Article  ADS  Google Scholar 

  11. Lund, A.P., Ralph, T.C.: Nondeterministic gates for photonic single-rail quantum logic. Phys. Rev. A 66, 032307 (2002)

    Article  ADS  Google Scholar 

  12. Lütkenhaus, N., Calsamiglia, J., Suominen, K.-A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Calsamiglia, J., Lütkenhaus, N.: Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 67–71 (2001)

    Article  ADS  Google Scholar 

  14. Grice, W.P.: Arbitrarily complete Bell-state measurement using only linear optical elements. Phys. Rev. A 84, 042331 (2011)

    Article  ADS  Google Scholar 

  15. Zaidi, H.A., van Loock, P.: Beating the one-half limit of ancilla-free linear optics Bell measurements. Phys. Rev. Lett. 110, 260501 (2013)

    Article  ADS  Google Scholar 

  16. Ewert, F., van Loock, P.: 3/4-efficient Bell measurement with passive linear optics and unentangled ancillae. Phys. Rev. Lett. 113, 140403 (2014)

    Article  ADS  Google Scholar 

  17. Lee, S.-W., Park, K., Ralph, T.C., Jeong, H.: Nearly deterministic Bell measurement for multiphoton qubits and its application to quantum information processing. Phys. Rev. Lett. 114, 113603 (2015)

    Article  ADS  Google Scholar 

  18. Lee, S.-W., Park, K., Ralph, T.C., Jeong, H.: Nearly deterministic Bell measurement with multiphoton entanglement for efficient quantum-information processing. Phys. Rev. A 92, 052324 (2015)

    Article  ADS  Google Scholar 

  19. van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64, 022313 (2001)

    Article  ADS  Google Scholar 

  20. Jeong, H., Kim, M.S., Lee, J.: Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001)

    Article  ADS  Google Scholar 

  21. Jeong, H., Kim, M.S.: Efficient quantum computation using coherent states. Phys. Rev. A 65, 042305 (2002)

    Article  ADS  Google Scholar 

  22. Jeong, H., Kim, M.S.: Purification of entangled coherent states. Quantum Inf. Comput. 2, 208–221 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Ralph, T.C., Gilchrist, A., Milburn, G.J., Munro, W.J., Glancy, S.: Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003)

    Article  ADS  Google Scholar 

  24. Lee, S.-W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. Park, K., Lee, S.-W., Jeong, H.: Quantum teleportation between particlelike and fieldlike qubits using hybrid entanglement under decoherence effects. Phys. Rev. A 86, 062301 (2012)

    Article  ADS  Google Scholar 

  26. Kwon, H., Jeong, H.: Violation of the Bell–Clauser–Horne–Shimony–Holt inequality using imperfect photodetectors with optical hybrid states. Phys. Rev. A 88, 052127 (2013)

    Article  ADS  Google Scholar 

  27. Gerry, C.C.: Generation of optical macroscopic quantum superposition states via state reduction with a Mach–Zehnder interferometer containing a Kerr medium. Phys. Rev. A 59, 4095–4098 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  28. Jeong, H.: Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation. Phys. Rev. A 72, 034305 (2005)

    Article  ADS  Google Scholar 

  29. Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)

    Article  ADS  Google Scholar 

  30. Shapiro, J.H., Razavi, M.: Continuous-time cross-phase modulation and quantum computation. New J. Phys. 9, 16 (2007)

    Article  ADS  Google Scholar 

  31. Kwon, H., Jeong, H.: Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state. Phys. Rev. A 91, 012340 (2015)

    Article  ADS  Google Scholar 

  32. Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R., Grangier, P.: Generation of optical ‘Schrödinger cats’ from photon number states. Nature (London) 448, 784–786 (2007)

    Article  ADS  Google Scholar 

  33. Jeong, H., Zavatta, A., Kang, M., Lee, S.-W., Costanzo, L.S., Grandi, S., Ralph, T.C., Bellini, M.: Generation of hybrid entanglement of light. Nat. Photonics 8, 564–569 (2014)

    Article  ADS  Google Scholar 

  34. Morin, O., Huang, K., Liu, J., Jeannic, H.L., Fabre, C., Laurat, J.: Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photonics 8, 570–574 (2014)

    Article  ADS  Google Scholar 

  35. Kim, H., Park, J., Jeong, H.: Transfer of different types of optical qubits over a lossy environment. Phys. Rev. A 89, 042303 (2014)

    Article  ADS  Google Scholar 

  36. Walls, D.F., Milburn, G.J.: Effect of dissipation on quantum coherence. Phys. Rev. A 31, 2403–2408 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  37. Oh, S., Lee, S., Lee, H.-W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  38. Man, Z.-X., Xia, Y.-J.: Quantum teleportation in a dissipative environment. Quantum Inf. Process. 11, 1911–1920 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. De Martini, F.: Amplification of quantum entanglement. Phys. Rev. Lett. 81, 2842–2845 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. De Martini, F., Sciarrino, F., Vitelli, C.: Entanglement test on a microscopic–macroscopic system. Phys. Rev. Lett. 100, 253601 (2008)

    Article  ADS  Google Scholar 

  41. Sekatski, P., Sanguinetti, B., Pomarico, E., Gisin, N., Simon, C.: Cloning entangled photons to scales one can see. Phys. Rev. A 82, 053814 (2010)

    Article  ADS  Google Scholar 

  42. Sekatski, P., Sangouard, N., Stobińska, M., Bussières, F., Afzelius, M., Gisin, N.: Proposal for exploring macroscopic entanglement with a single photon and coherent states. Phys. Rev. A 86, 060301(R) (2012)

    Article  ADS  Google Scholar 

  43. Ghobadi, R., Lvovsky, A., Simon, C.: Creating and detecting micro–macro photon-number entanglement by amplifying and deamplifying a single-photon entangled state. Phys. Rev. Lett. 110, 170406 (2013)

    Article  ADS  Google Scholar 

  44. Bruno, N., Martin, A., Sekatski, P., Sangouard, N., Thew, R.T., Gisin, N.: Displacement of entanglement back and forth between the micro and macro domains. Nat. Phys. 9, 545–548 (2013)

    Article  Google Scholar 

  45. Lvovsky, A.I., Ghobadi, R., Chandra, A., Prasad, A.S., Simon, C.: Observation of micromacro entanglement of light. Nat. Phys. 9, 541–544 (2013)

    Article  Google Scholar 

  46. Andersen, U.L., Neergaard-Nielsen, J.S.: Heralded generation of a micro–macro entangled state. Phys. Rev. A 88, 022337 (2013)

    Article  ADS  Google Scholar 

  47. Sheng, Y.-B., Zhou, L., Long, G.-L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013)

    Article  ADS  Google Scholar 

  48. Takeda, S., Mizuta, T., Fuwa, M., van Loock, P., Furusawa, A.: Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature (London) 500, 315–318 (2013)

    Article  ADS  Google Scholar 

  49. Andersen, U.L., Neergaard-Nielsen, J.S., van Loock, P., Furusawa, A.: Hybrid discrete- and continuous-variable quantum information. Nat. Phys. 11, 713–719 (2015)

    Article  Google Scholar 

  50. Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973)

    MATH  Google Scholar 

  51. Phoenix, S.J.D.: Wave-packet evolution in the damped oscillator. Phys. Rev. A 41, 5132–5138 (1990)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2010-0018295) and by the KIST Institutional Program (Progect No. 2E26680-16-P025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunseok Jeong.

Appendix

Appendix

In this appendix, we present all possible teleported states, their probabilities of obtaining such particular outcomes and fidelities with the input state \(|\phi (\tau )\rangle \) for the teleportation of type-II hybrid qubits. All the listed states are the final teleported states on which appropriate unitary transforms are applied. If the measurement results are revealed as \(E_{1}\otimes O_{2}\), \(E_{1}\otimes O_{3}\), \(E_{2}\otimes O_{1}\) and \(E_{2}\otimes O_{4}\), the final teleported states are

$$\begin{aligned} \rho ^T_1(\tau )&=|\mu |^2\rho _{++}\otimes |t\alpha \rangle \langle t\alpha | +|\nu |^2\rho _{--}\otimes |-t\alpha \rangle \langle -t\alpha | \nonumber \\&\quad +te^{-4|\alpha |^2r^2}\big (\mu \nu ^*\rho _{+-}\otimes |t\alpha \rangle \langle -t\alpha | +\mu ^*\nu \rho _{-+}\otimes |-t\alpha \rangle \langle t\alpha |\big ), \end{aligned}$$
(51)

with the probability

$$\begin{aligned} p_1(\tau )&=\mathrm{Tr}_{c,C}[\rho ^{1,2}]+\mathrm{Tr}_{c,C}[\rho ^{1,3}]+\mathrm{Tr}_{c,C}[\rho ^{2,1}]+\mathrm{Tr}_{c,C}[\rho ^{2,4}] \nonumber \\&=\frac{1}{4}\left( 1-e^{-2|\alpha |^2t^2}\right) \left( 1+te^{-2|\alpha |^2t^2}\right) . \end{aligned}$$
(52)

Their fidelities with the input state \(|\phi (\tau )\rangle \) are calculated as

$$\begin{aligned} f_1(\tau )&=(|\mu |^4+|\nu |^4)\frac{1+t}{2} +2|\mu |^2|\nu |^2\bigg (\frac{1-t}{2}e^{-4|\alpha |^2t^2}+t\frac{t^2+t}{2}e^{-4|\alpha |^2r^2}\bigg ) \nonumber \\&\quad +\left( \mu ^2{\nu ^*}^2+{\mu ^*}^2\nu ^2 \right) t\frac{t^2-t}{2}e^{-4|\alpha |^2} +(\mu \nu ^*+\mu ^*\nu )\frac{r^2}{2}e^{-2|\alpha |^2t^2}. \end{aligned}$$
(53)

If the measurement results are revealed as \(E_{1}\otimes O_{1}\), \(E_{1}\otimes O_{4}\), \(E_{2}\otimes O_{2}\) and \(E_{2}\otimes O_{3}\), the final teleported states are

$$\begin{aligned} \rho ^T_2(\tau )&=|\mu |^2\rho _{++}^\prime \otimes |t\alpha \rangle \langle t\alpha | +|\nu |^2\rho _{--}^\prime \otimes |-t\alpha \rangle \langle -t\alpha | \nonumber \\&\quad +te^{-4|\alpha |^2r^2}\big (\mu \nu ^*\rho _{+-}\otimes |t\alpha \rangle \langle -t\alpha | +\mu ^*\nu \rho _{-+}\otimes |-t\alpha \rangle \langle t\alpha |\big ), \end{aligned}$$
(54)

where

$$\begin{aligned} \rho _{++}^\prime&=\frac{1+t}{2}|+\rangle \langle +|+\frac{1-t}{2}|-\rangle \langle -|-\frac{r^2}{2}|+\rangle \langle -|-\frac{r^2}{2}|-\rangle \langle +|,\end{aligned}$$
(55)
$$\begin{aligned} \rho _{--}^\prime&=\frac{1-t}{2}|+\rangle \langle +|+\frac{1+t}{2}|-\rangle \langle -|-\frac{r^2}{2}|+\rangle \langle -|-\frac{r^2}{2}|-\rangle \langle +|, \end{aligned}$$
(56)

with the probability

$$\begin{aligned} p_2(\tau )&=\mathrm{Tr}_{c,C}[\rho ^{1,1}]+\mathrm{Tr}_{c,C}[\rho ^{1,4}]+\mathrm{Tr}_{c,C}[\rho ^{2,2}]+\mathrm{Tr}_{c,C}[\rho ^{2,3}] \nonumber \\&=\frac{1}{4}\left( 1-e^{-2|\alpha |^2t^2}\right) \left( 1-te^{-2|\alpha |^2t^2}\right) , \end{aligned}$$
(57)

and the fidelities are

$$\begin{aligned} f_2(\tau )&=(|\mu |^4+|\nu |^4)\frac{1+t}{2} +2|\mu |^2|\nu |^2\bigg (\frac{1-t}{2}e^{-4|\alpha |^2t^2}+t\frac{t^2+t}{2}e^{-4|\alpha |^2r^2}\bigg ) \nonumber \\&\quad +\left( \mu ^2{\nu ^*}^2+{\mu ^*}^2\nu ^2 \right) t\frac{t^2-t}{2}e^{-4|\alpha |^2} -(\mu \nu ^*+\mu ^*\nu )\frac{r^2}{2}e^{-2|\alpha |^2t^2}. \end{aligned}$$
(58)

If the measurement results are revealed as \(E_\mathrm{e}\otimes O_{1}\) and \(E_\mathrm{e}\otimes O_{3}\), the final teleported states are

$$\begin{aligned} \rho ^T_3(\tau )&=|\mu |^2\rho _{++}\otimes |t\alpha \rangle \langle t\alpha | +|\nu |^2\rho _{--}\otimes |-t\alpha \rangle \langle -t\alpha | \nonumber \\&\quad +t^2e^{-4|\alpha |^2r^2}\big (\mu \nu ^*\rho _{+-}\otimes |t\alpha \rangle \langle -t\alpha | +\mu ^*\nu \rho _{-+}\otimes |-t\alpha \rangle \langle t\alpha |\big ), \end{aligned}$$
(59)

with the probability

$$\begin{aligned} p_3(\tau )=\mathrm{Tr}_{c,C}[\rho ^{\mathrm{e},1}]+\mathrm{Tr}_{c,C}[\rho ^{\mathrm{e},3}] =\frac{1}{4}\left( 1-e^{-2|\alpha |^2t^2}\right) ^2, \end{aligned}$$
(60)

and the fidelities are

$$\begin{aligned} f_3(\tau )&=(|\mu |^4+|\nu |^4)\frac{1+t}{2} +2|\mu |^2|\nu |^2\bigg (\frac{1-t}{2}e^{-4|\alpha |^2t^2}+t^2\frac{t^2+t}{2}e^{-4|\alpha |^2r^2}\bigg ) \nonumber \\&\quad +\left( \mu ^2{\nu ^*}^2+{\mu ^*}^2\nu ^2 \right) t^2\frac{t^2-t}{2}e^{-4|\alpha |^2} +(\mu \nu ^*+\mu ^*\nu )\frac{r^2}{2}e^{-2|\alpha |^2t^2}. \end{aligned}$$
(61)

If the measurement results are revealed as \(E_\mathrm{e}\otimes O_{2}\) and \(E_\mathrm{e}\otimes O_{4}\), the final teleported states are

$$\begin{aligned} \rho ^T_4(\tau )&=|\mu |^2\rho _{++}^\prime \otimes |t\alpha \rangle \langle t\alpha | +|\nu |^2\rho _{--}^\prime \otimes |-t\alpha \rangle \langle -t\alpha | \nonumber \\&\quad +t^2e^{-4|\alpha |^2r^2}\big (\mu \nu ^*\rho _{+-}\otimes |t\alpha \rangle \langle -t\alpha | +\mu ^*\nu \rho _{-+}\otimes |-t\alpha \rangle \langle t\alpha |\big ), \end{aligned}$$
(62)

with the probability

$$\begin{aligned} p_4(\tau )=\mathrm{Tr}_{c,C}[\rho ^{\mathrm{e},2}]+\mathrm{Tr}_{c,C}[\rho ^{\mathrm{e},4}] =\frac{1}{4}(1-e^{-2|\alpha |^2t^2})(1+e^{-2|\alpha |^2t^2}), \end{aligned}$$
(63)

and the fidelities are

$$\begin{aligned} f_4(\tau )&=(|\mu |^4+|\nu |^4)\frac{1+t}{2} +2|\mu |^2|\nu |^2\bigg (\frac{1-t}{2}e^{-4|\alpha |^2t^2}+t^2\frac{t^2+t}{2}e^{-4|\alpha |^2r^2}\bigg ) \nonumber \\&\quad +\left( \mu ^2{\nu ^*}^2+{\mu ^*}^2\nu ^2 \right) t^2\frac{t^2-t}{2}e^{-4|\alpha |^2} -(\mu \nu ^*+\mu ^*\nu )\frac{r^2}{2}e^{-2|\alpha |^2t^2}. \end{aligned}$$
(64)

Lastly, for the measurement results of \(E_{1}\otimes O_\mathrm{e}\) and \(E_{2}\otimes O_\mathrm{e}\), the final teleported states are

$$\begin{aligned} \rho ^T_5(\tau )&=\frac{1}{1-(\mu \nu ^*+\mu ^*\nu )r^2} \nonumber \\&\quad \times \bigg \{\bigg (|\mu |^2\frac{1+t}{2}-\mu \nu ^*\frac{r^2}{2}-\mu ^*\nu \frac{r^2}{2}+|\nu |^2\frac{1-t}{2}\bigg ) \rho _{++}^\prime \otimes |t\alpha \rangle \langle t\alpha | \nonumber \\&\quad +\bigg (|\mu |^2\frac{1-t}{2}-\mu \nu ^*\frac{r^2}{2}-\mu ^*\nu \frac{r^2}{2}+|\nu |^2\frac{1+t}{2}\bigg ) \rho _{--}^\prime \otimes |-t\alpha \rangle \langle -t\alpha | \nonumber \\&\quad +e^{-4|\alpha |^2r^2}\bigg [\bigg (\mu \nu ^*\frac{t^2+t}{2}+\mu ^*\nu \frac{t^2-t}{2}\bigg )\rho _{+-} \otimes |t\alpha \rangle \langle -t\alpha | \nonumber \\&\quad +\bigg (\mu \nu ^*\frac{t^2-t}{2}+\mu ^*\nu \frac{t^2+t}{2}\bigg )\rho _{-+}\otimes |-t\alpha \rangle \langle t\alpha |\bigg ]\bigg \} \end{aligned}$$
(65)

with the probability

$$\begin{aligned} p_5(\tau )=\mathrm{Tr}_{c,C}[\rho ^{1,\mathrm{e}}]+\mathrm{Tr}_{c,C}[\rho ^{2,\mathrm{e}}] =\frac{1}{2}e^{-2|\alpha |^2t^2}\left[ 1-(\mu \nu ^*+\mu ^*\nu )r^2 \right] , \end{aligned}$$
(66)

and the fidelities are

$$\begin{aligned} f_5(\tau )&=\frac{1}{1-(\mu \nu ^*+\mu ^*\nu )r^2} \bigg \{(|\mu |^4+|\nu |^4)\bigg [\bigg (\frac{1+t}{2}\bigg )^2+\bigg (\frac{1-t}{2}\bigg )^2e^{-4|\alpha |^2t^2}\bigg ] \nonumber \\&\quad +2|\mu |^2|\nu |^2\bigg [\frac{r^2}{4}\left( 1+e^{-2|\alpha |^2t^2}\right) ^2 +\bigg (\frac{t^2+t}{2}\bigg )^2e^{-4|\alpha |^2r^2}+\bigg (\frac{t^2-t}{2}\bigg )^2e^{-4|\alpha |^2}\bigg ] \nonumber \\&\quad +(\mu ^2{\nu ^*}^2+{\mu ^*}^2\nu ^2)\bigg [\frac{r^4}{2}e^{-2|\alpha |^2t^2} +\bigg (\frac{t^2+t}{2}\bigg )\bigg (\frac{t^2-t}{2}\bigg )\left( e^{-4|\alpha |^2r^2}+e^{-4|\alpha |^2}\right) \bigg ] \nonumber \\&\quad -(\mu \nu ^*+\mu ^*\nu )\frac{r^2}{2}\left( 1+e^{-2|\alpha |^2t^2}\right) \bigg (\frac{1+t}{2}+\frac{1-t}{2}e^{-2|\alpha |^2t^2}\bigg )\bigg \}. \end{aligned}$$
(67)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Lee, SW. & Jeong, H. Two different types of optical hybrid qubits for teleportation in a lossy environment. Quantum Inf Process 15, 4729–4746 (2016). https://doi.org/10.1007/s11128-016-1408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1408-7

Keywords

Navigation