Skip to main content
Log in

A probabilistic approach to quantum Bayesian games of incomplete information

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A Bayesian game is a game of incomplete information in which the rules of the game are not fully known to all players. We consider the Bayesian game of Battle of Sexes that has several Bayesian Nash equilibria and investigate its outcome when the underlying probability set is obtained from generalized Einstein–Podolsky–Rosen experiments. We find that this probability set, which may become non-factorizable, results in a unique Bayesian Nash equilibrium of the game.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blaquiere, A.: Wave mechanics as a two player game. In: Dynamical Systems and Microphysics, 33. Springer, Berlin (1980). Available at the quantum computation archive maintained by Tom Toffoli: http://pm1.bu.edu/~tt/qcl/pdf/blaquiea198277787a07.pdf

  2. Wiesner, S.: Conjugate coding, SIGACT News 15 /1, 78 (1983). Available at the quantum computation archive maintained by Tom Toffoli: http://pm1.bu.edu/~tt/qcl/pdf/wiesners198316024137.pdf

  3. Mermin, N.D.: Quantum mysteries revisited. Am. J. Phys. 58, 731 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  4. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47, 2543 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Vaidman, L.: Variations on the theme of the Greenberger–Horne–Zeilinger Proof. Found. Phys. 29, 615 (1999)

    Article  MathSciNet  Google Scholar 

  9. Benjamin, S.C., Hayden, P.M.: Comment on “Quantum games and quantum strategies”. Phys. Rev. Lett. 87, 069801 (2001)

    Article  ADS  Google Scholar 

  10. van Enk, S.J., Pike, R.: Classical rules in quantum games. Phys. Rev. A 66, 024306 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  11. Johnson, N.F.: Playing a quantum game with a corrupted source. Phys. Rev. A 63, 020302(R) (2001)

    Article  ADS  Google Scholar 

  12. Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Iqbal, A., Toor, A.H.: Evolutionarily stable strategies in quantum games. Phys. Lett. A 280, 249 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Du, J., Li, H., Xu, X., Zhou, X., Han, R.: Entanglement enhanced multiplayer quantum games. Phys. Lett. A 302, 229 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Du, J., Li, H., Xu, X., Shi, M., Wu, J., Zhou, X., Han, R.: Experimental realization of quantum games on a quantum computer. Phys. Rev. Lett. 88, 137902 (2002)

    Article  ADS  Google Scholar 

  16. Piotrowski, E.W., Sladkowski, J.: Quantum market games. Phys. A 312, 208 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iqbal, A., Toor, A.H.: Quantum cooperative games. Phys. Lett. A 293, 103 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Flitney, A.P., Abbott, D.: An introduction to quantum game theory. Fluct. Noise Lett. 2, R175 (2002)

    Article  MathSciNet  Google Scholar 

  19. Iqbal, A., Toor, A.H.: Quantum mechanics gives stability to a Nash equilibrium. Phys. Rev. A 65, 022306 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  20. Piotrowski, E.W., Sladkowski, J.: An invitation to quantum game theory. Int. J. Theor. Phys. 42, 1089 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shimamura, J., Özdemir, S.K., Morikoshi, F., Imoto, N.: Entangled states that cannot reproduce original classical games in their quantum version. Phys. Lett. A 328, 20 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Flitney, A.P., Abbott, D.: Quantum games with decoherence. J. Phys. A 38, 449 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Du, J., Li, H., Xu, X., Zhou, X., Han, R.-D.: Multi-player and multi-choice quantum game. Chin. Phys. Lett. 19, 1221 (2002)

    Article  ADS  Google Scholar 

  24. Han, Y.J., Zhang, Y.S., Guo, G.C.: W state and Greenberger–Horne–Zeilinger state in quantum three-person prisoner’s dilemma. Phys. Lett. A 295, 61 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Iqbal, A., Weigert, S.: Quantum correlation games. J. Phys. A 37, 5873 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Mendes, R.: The quantum ultimatum game. Quant. Inf. Process. 4, 1 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Cheon, T., Tsutsui, I.: Classical and quantum contents of solvable game theory on Hilbert space. Phys. Lett. A 348, 147 (2006)

    Article  ADS  MATH  Google Scholar 

  28. Iqbal, A.: Playing games with EPR-type experiments. J. Phys. A Math. Gen. 38, 9551 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Nawaz, A., Toor, A.H.: Generalized quantization scheme for two-person non-zero-sum games. J. Phys. A Math. Gen. 37, 11457 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Özdemir, S.K., Shimamura, J., Imoto, N.: Quantum advantage does not survive in the presence of a corrupt source: optimal strategies in simultaneous move games. Phys. Lett. A 325, 104 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Cheon, T.: Game theory formulated on Hilbert space. In: AIP Conference Proceedings, Volume 864, pp. 254 260, Quantum Computing: Back Action (2006), Indian Institute of Technology, Kanpur, India. arXiv:quantph/0605134

  32. Shimamura, J., Özdemir, S.K., Morikoshi, F., Imoto, N.: Quantum and classical correlations between players in game theory. Int. J. Quant. Inf. 2, 79 (2004)

    Article  MATH  Google Scholar 

  33. Chen, Q., Wang, Y., Liu, J.T., Wang, K.L.: N-player quantum minority game. Phys. Lett. A 327, 98 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Schmid, C., Flitney, A.P., Wieczorek, W., Kiesel, N., Weinfurter, H., Hollenberg, L.C.L.: Experimental implementation of a four-player quantum game. New J. Phys. 12, 063031 (2010)

    Article  ADS  Google Scholar 

  35. Ichikawa, T., Tsutsui, I.: Duality, phase structures, and dilemmas in symmetric quantum games. Ann. Phys. 322, 531 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Cheon, T., Iqbal, A.: Bayesian Nash equilibria and Bell inequalities. J. Phys. Soc. Jpn. 77, 024801 (2008)

    Article  ADS  Google Scholar 

  37. Özdemir, S.K., Shimamura, J., Imoto, N.: A necessary and sufficient condition to play games in quantum mechanical settings. New J. Phys. 9, 43 (2007)

    Article  Google Scholar 

  38. Flitney, A.P., Greentree, A.D.: Coalitions in the quantum Minority game: classical cheats and quantum bullies. Phys. Lett. A 362, 132 (2007)

    Article  ADS  MATH  Google Scholar 

  39. Iqbal, A., Cheon, T.: Constructing quantum games from nonfactorizable joint probabilities. Phys. Rev. E 76, 061122 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  40. Ichikawa, T., Tsutsui, I., Cheon, T.: Quantum game theory based on the Schmidt decomposition. J. Phys. A Math. Theory 41, 135303 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  41. Ramzan, M., Khan, M.K.: Noise effects in a three-player Prisoner’s Dilemma quantum game. J. Phys. A Math. Theory 41, 435302 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  42. Flitney, A.P., Hollenberg, L.C.L.: Nash equilibria in quantum games with generalized two-parameter strategies. Phys. Lett. A 363, 381 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Aharon, N., Vaidman, L.: Quantum advantages in classically defined tasks. Phys. Rev. A 77, 052310 (2008)

    Article  ADS  Google Scholar 

  44. Bleiler, S.A.: A formalism for quantum games and an application. arXiv:0808.1389

  45. Ahmed, A., Bleiler, S., Khan, F.S.: Octonionization of three player, two strategy maximally entangled quantum games. Int. J. Quant. Inform. 8(3), 411 (2010)

    Article  MATH  Google Scholar 

  46. Li, Q., He, Y., Jiang, J.P.: A novel clustering algorithm based on quantum games. J. Phys. A Math. Theor. 42, 445303 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  47. Li, Q., Iqbal, A., Chen, M., Abbott, D.: Quantum strategies win in a defector-dominated population. Phys. A 391, 3316 (2012)

    Article  Google Scholar 

  48. Chappell, J.M., Iqbal, A., Abbott, D.: Constructing quantum games from symmetric non-factorizable joint probabilities. Phys. Lett. A 374, 4104 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Chappell, J.M., Iqbal, A., Abbott, D.: Analyzing three-player quantum games in an EPR type setup. PLoS ONE 6(7), e21623 (2011)

    Article  ADS  Google Scholar 

  50. Iqbal, A., Abbott, D.: Quantum matching pennies game. J. Phys. Soc. Jpn. 78, 014803 (2009)

    Article  ADS  Google Scholar 

  51. Chappell, J.M., Iqbal, A., Lohe, M.A., von Smekal, L.: An analysis of the quantum penny flip game using geometric algebra. J. Phys. Soc. Jpn. 78, 054801 (2009)

    Article  ADS  Google Scholar 

  52. Iqbal, A., Cheon, T., Abbott, D.: Probabilistic analysis of three-player symmetric quantum games played using the Einstein–Podolsky–Rosen–Bohm setting. Phys. Lett. A 372, 6564 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Chappell, J.M., Iqbal, A., Abbott, D.: Analysis of two-player quantum games in an EPR setting using geometric algebra. PLoS ONE 7(1), e29015 (2012)

    Article  ADS  Google Scholar 

  54. Chappell, J.M., Iqbal, A., Abbott, D.: N-player quantum games in an EPR setting. PLoS ONE 7(5), e36404 (2012)

    Article  ADS  Google Scholar 

  55. Phoenix, S.J.D., Khan, F.S.: The role of correlation in quantum and classical games. Fluct. Noise Lett. 12, 1350011 (2013)

    Article  MathSciNet  Google Scholar 

  56. Khan, F.S., Phoenix, S.J.D.: Gaming the quantum. Quant. Inf. Comput. 13(3–4), 231 (2013)

    MathSciNet  Google Scholar 

  57. Khan, F.S., Phoenix, S.J.D.: Mini-maximizing two qubit quantum computations. Quant. Inf. Process. 12, 3807 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Dordrecht (1995)

    MATH  Google Scholar 

  59. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  60. Binmore, K.: Game Theory: A Very Short Introduction. Oxford University Press, USA (2007)

    Book  Google Scholar 

  61. Rasmusen, E.: Games and Information: An Introduction to Game Theory, 3rd edn. Blackwell Publishers Ltd., Oxford (2001)

    Google Scholar 

  62. Osborne, M.J.: An Introduction to Game Theory. Oxford University Press, USA (2003)

    Google Scholar 

  63. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  64. Bohm, D.: Quantum Theory. Prentice Hall, Englewood Cliffs (1951)

    Google Scholar 

  65. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

  66. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  67. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447 (1966)

    Article  ADS  MATH  Google Scholar 

  68. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  69. Clauser, J.F., Shimony, A.: Bell’s theorem. Experimental tests and implications. Rep. Prog. Phys. 41, 1881 (1978)

    Article  ADS  Google Scholar 

  70. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  71. Cereceda, J.L.: Quantum mechanical probabilities and general probabilistic constraints for Einstein–Podolsky–Rosen–Bohm experiments. Found. Phys. Lett. 13, 427 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We acknowledge helpful discussions with Andrew Allison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azhar Iqbal.

Appendix

Appendix

Using the standard notation, the set of 16 probabilities in (17) is obtained from a pure state of two qubits

$$\begin{aligned} \left| \psi _{0}\right\rangle =\alpha \left| 00\right\rangle +\beta \left| 01\right\rangle +\gamma \left| 10\right\rangle +\delta \left| 11\right\rangle \end{aligned}$$
(33)

where \(\alpha ,\beta ,\gamma ,\delta \in \varvec{C}\) and \(\left| \alpha \right| ^{2}+\left| \beta \right| ^{2}+\left| \gamma \right| ^{2}+\left| \delta \right| ^{2}=1\). We assume that observer 1’s directions \(D_{1}\) and \(D_{2}\) are along the unit vectors \( \hat{a}\) and \(\hat{c}\), respectively. Similarly, observer 2’s directions \( D_{1}^{\prime }\) and \(D_{2}^{\prime }\) are along the unit vectors \(\hat{b}\) and \(\hat{d}\), respectively. Without the loss of generality, we also assume that the unit vectors \(\hat{a}=[a_{x},a_{y}]\), \(\hat{b}=[b_{x},b_{y}]\), \(\hat{c} =[c_{x},c_{y}]\), and \(\hat{d}=[d_{x},d_{y}]\) are all located in the x–y plane. Observer 1’s measurement operators are then \(\hat{\sigma }\cdot \hat{ a}\) and \(\hat{\sigma }\cdot \hat{c}\), respectively. Similarly, observer 2’s measurement operators are \(\hat{\sigma }\cdot \hat{b}\) and \(\hat{\sigma }\cdot \hat{d}\), respectively. Here, \(\hat{\sigma }=[\sigma _{x},\sigma _{y},\sigma _{z}]\) and \(\sigma _{x},\sigma _{y},\sigma _{z}\) are Pauli spin matrices.

Consider the probability \(\varepsilon _{1}\) in the (17) that corresponds to observers 1 and 2 measuring along the directions \(\hat{a}\) and \(\hat{b}\), respectively, and both obtaining the outcome \(+1\). For this situation, we require the eigenstates of the operators \((\hat{\sigma }\cdot \hat{a})\) and \((\hat{\sigma }\cdot \hat{b})\), with the eigenvalue of \(+1\) for both. These are found to be \(\frac{\left| 0\right\rangle +(a_{x}+ia_{y})\left| 1\right\rangle }{\sqrt{2}}\) and \(\frac{\left| 0\right\rangle +(b_{x}+ib_{y})\left| 1\right\rangle }{\sqrt{2}}\), respectively. From these, the eigenstate of the measurement operator \((\hat{ \sigma }\cdot \hat{a})\otimes (\hat{\sigma }\cdot \hat{b})\), with the eigenvalue \(+1\), is obtained as

$$\begin{aligned} \left| \psi _{1}\right\rangle =\frac{1}{2}(\left| 00\right\rangle +(b_{x}+ib_{y})\left| 01\right\rangle +(a_{x}+ia_{y})\left| 10\right\rangle +(a_{x}+ia_{y})(b_{x}+ib_{y})\left| 11\right\rangle ), \end{aligned}$$
(34)

and the probability \(\varepsilon _{1}\) is then obtained from \(\left| \left\langle \psi _{1}\right| \left. \psi _{0}\right\rangle \right| ^{2}\). For the pure state (33), this becomes

$$\begin{aligned} \varepsilon _{1}=\frac{1}{4}\left| \alpha +\beta (b_{x}-ib_{y})+\gamma (a_{x}-ia_{y})+\delta (a_{x}-ia_{y})(b_{x}-ib_{y})\right| ^{2}. \end{aligned}$$
(35)

Similarly, for the probability \(\varepsilon _{2}\), along with the eigenstate of \((\hat{\sigma }\cdot \hat{a})\) with eigenvalue \(+1\) obtained above, we require the eigenstate of the operator \((\hat{\sigma }\cdot \hat{b})\) with the eigenvalues \(-1\), which is \(\frac{\left| 0\right\rangle -(b_{x}+ib_{y})\left| 1\right\rangle }{\sqrt{2}}\). From these, the eigenstate of the measurement operator \((\hat{\sigma }\cdot \hat{a})\otimes ( \hat{\sigma }\cdot \hat{b})\), with the eigenvalue \(-1\), is obtained as

$$\begin{aligned} \left| \psi _{2}\right\rangle =\frac{1}{2}(\left| 00\right\rangle -(b_{x}+ib_{y})\left| 01\right\rangle +(a_{x}+ia_{y})\left| 10\right\rangle -(a_{x}+ia_{y})(b_{x}+ib_{y})\left| 11\right\rangle ), \end{aligned}$$
(36)

and, as before, the probability \(\varepsilon _{2}\) is then obtained from \( \left| \left\langle \psi _{2}\right| \left. \psi _{0}\right\rangle \right| ^{2}\). For the pure state (33), this becomes

$$\begin{aligned} \varepsilon _{2}=\frac{1}{4}\left| \alpha -\beta (b_{x}-ib_{y})+\gamma (a_{x}-ia_{y})-\delta (a_{x}-ia_{y})(b_{x}-ib_{y})\right| ^{2}, \end{aligned}$$
(37)

and the remaining probabilities \(\varepsilon _{3},\varepsilon _{4} \cdots \varepsilon _{16}\) can be obtained similarly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, A., Chappell, J.M., Li, Q. et al. A probabilistic approach to quantum Bayesian games of incomplete information. Quantum Inf Process 13, 2783–2800 (2014). https://doi.org/10.1007/s11128-014-0824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0824-9

Keywords

Navigation