Skip to main content
Log in

Multi-user private comparison protocol using GHZ class states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper proposes a pioneering quantum private comparison (QPC) protocol for n users. State-of-the-art QPC protocols have been designed for two users who wish to compare their private information. However, if n users want to perform the equality comparison, these two-user QPC protocols have to be executed repeatedly at least n − 1 times. The proposed protocol allows n users’ private information to be compared within one protocol execution. The proposed QPC protocol takes the Greenberger–Horne–Zeilinger (GHZ) class as a quantum resource and uses a special property in the GHZ-class state to perform the equality comparison. Moreover, due to the one-step quantum transmission, the protocol is free from Trojan horse attacks and it is also shown to be secure against other well-known attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, New York, Bangalore, India, pp. 175–179 (1984)

  2. Bennett CH., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters WK.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Furusawa A., Sørensen J.L., Braunstein S.L., Fuchs C.A., Kimble H.J., Polzik E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)

    Article  ADS  Google Scholar 

  4. Zhang Z.J., Man Z.X.: Many-agent controlled teleportation of multi-qubit quantum information. Phys. Lett. A 341(1–4), 55–59 (2005)

    Article  ADS  MATH  Google Scholar 

  5. Zhang W., Liu Y.M., Liu J., Zhang Z.J.: Teleportation of arbitrary unknown two atom state with cluster state via thermal cavity. Chin. Phys. B 17(9), 3203–3208 (2008)

    Article  ADS  Google Scholar 

  6. Zhang Z.Y., Liu Y.M., Zuo X.Q., Zhang W., Zhang Z.J.: Transformation operator and criterion for perfectly teleporting arbitrary three-qubit state with six-qubit channel and Bell-state measurement. Chin. Phys. Lett. 26(12), 120303 (2009)

    Article  ADS  Google Scholar 

  7. Tsai C.W., Hwang T.: Teleportation of a pure EPR state via GHZ-like state. Int. J. Theor. Phys. 49(8), 1969–1975 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  9. Xiao L., Long G.L., Deng F.G., Pan J.W.: Efficient multiparty quantum secret sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  10. Zhang Z.J., Man Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  11. Deng F.G., Long G.L., Zhou H.Y.: An efficient quantum secret sharing scheme with Einstein– Podolsky–Rosen pairs. Phys. Lett. A 340(1–4), 43–50 (2005)

    Article  ADS  MATH  Google Scholar 

  12. Deng F.G., Zhou H.Y., Long G.L.: Circular quantum secret sharing. J. Phys. A Math. Gen. 39(45), 14089–14099 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Han L.F., Liu Y.M., Liu J., Zhang Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281(9), 2690–2694 (2008)

    Article  ADS  Google Scholar 

  14. Deng F.G., Li X.H., Zhou H.Y.: Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys. Lett. A 372(12), 1957–1962 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Sun Y., Wen Q.Y., Gao F., Chen X.B., Zhu F.C.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282(17), 3647–3651 (2009)

    Article  ADS  Google Scholar 

  16. Shi R.H., Huang L.S., Yang W., Zhong H.: Multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 283(11), 2476–2480 (2010)

    Article  ADS  Google Scholar 

  17. Bostroem K., Felbinger T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  18. Deng F.G., Long G.L., Liu X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  19. Man Z.X., Zhang Z.J., Li Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22(1), 18–21 (2005)

    Article  ADS  Google Scholar 

  20. Zhan Y.B., Zhang L.L., Zhang Q.Y.: Quantum secure direct communication by entangled qutrits and entanglement swapping. Opt. Commun. 282(23), 4633–4636 (2009)

    Article  ADS  Google Scholar 

  21. Yang C.W., Tsai C.W., Hwang T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Ser. G: Phys. Mech. Astron. 54(3), 496–501 (2011)

    Article  ADS  Google Scholar 

  22. Yang Y.G., Wen Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  23. Chen X.B., Xu G., Niu X.X., Wen QY., Yang Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  24. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’ 82), Washington, DC, USA, p. 160 (1982)

  25. Lo H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  26. Boudot F., Schoenmakers B., Traor’e J.: A fair and efficient solution to the socialist millionaires’ problem. Discret. Appl. Math. (Special issue on Coding and Cryptology) 111(1–2), 23–36 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Hillery M., Ziman M., Bužek V., Bieliková M.: Towards quantum-based privacy and voting. Phys. Lett. A 349(1–4), 5–81 (2006)

    Google Scholar 

  28. Vaccaro J.A., Spring J., Chefles A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)

    Article  ADS  Google Scholar 

  29. Hogg T., Harsha P., Chen K.Y.: Quantum auctions. Int. J. Quantum Inf. 5, 751–780 (2007)

    Article  MATH  Google Scholar 

  30. Yang Y.G., Naseri M., Wen Q.Y.: Improved secure quantum sealed-bid auction. Opt. Commun. 282(20), 4167–4170 (2009)

    Article  ADS  Google Scholar 

  31. Zhao Z., Naseri M., Zheng Y.: Secure quantum sealed-bid auction with post confirmation. Opt. Commun. 283(16), 3194–3197 (2010)

    Article  ADS  Google Scholar 

  32. Deng F.G., Li X.H., Zhou H.Y., Zhang Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  33. Cai Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  34. Li X.H., Deng F.G., Zhou H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  35. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s theorem. Arxiv preprint arXiv:0712.0921 (2007)

  36. Nielsen M.A.: Quantum computation by measurement and quantum memory. Phys. Lett. A 308(2–3), 96–100 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Jeffrey E., Brenner M., Kwiat P.: Delayed-choice quantum cryptography. Proc. SPIE 5161, 269–279 (2004)

    Article  ADS  Google Scholar 

  38. Jeffrey, E., Altepeter, J., Kwiat, P.: Relativistic quantum cryptography. In: Frontiers in Optics, OSA Technical Digest (CD), Optical Society of America, paper FWB1 (2006)

  39. Jeffrey, E., Altepeter, J., Kwiat, P.: Relativistic quantum cryptography with optical storage. In: International Conference on Quantum Information, OSA Technical Digest (CD), Optical Society of America, paper IFE1 (2007)

  40. Jennewein T., Simon C., Weihs G., Weinfurter H., Zeilinger A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84(20), 4729–4732 (2000)

    Article  ADS  Google Scholar 

  41. Hughes R.J., Nordholt J.E., Derkacs D., Peterson C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New. J. Phys. 4, 43.1–43.14 (2002)

    Article  Google Scholar 

  42. Gobby C., Yuan Z.L., Shields A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84(19), 3762–3764 (2004)

    Article  ADS  Google Scholar 

  43. Chong S.K., Hwang T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284(1), 515–518 (2011)

    Article  ADS  Google Scholar 

  44. Lin J., Hwang T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  45. Tsai C.-W., Hwang T.: New deterministic quantum communication via symmetric W state. Opt. Commun. 283(21), 4397–4400 (2010)

    Article  ADS  Google Scholar 

  46. Hsieh C.R., Tsai C.W., Hwang T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54(6), 1019–1022 (2010)

    Article  MATH  Google Scholar 

  47. Tsai C.W., Hsieh C.R., Hwang T.: Dense coding using cluster states and it’s application on deterministic secure quantum communication. Eur. Phys. J. D 61(3), 779–783 (2011)

    Article  ADS  Google Scholar 

  48. Hwang C.C., Hwang T., Tsai C.W.: Quantum key distribution protocol using dense coding of three-qubit W state. Eur. Phys. J. D 61(3), 785–790 (2011)

    Article  ADS  Google Scholar 

  49. Tsai C.W., Hwang T.: Multiparty quantum secret sharing based on two special entangled states. Sci. China Phys. Mech. Astron. 55(3), 460–464 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YJ., Tsai, CW. & Hwang, T. Multi-user private comparison protocol using GHZ class states. Quantum Inf Process 12, 1077–1088 (2013). https://doi.org/10.1007/s11128-012-0454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0454-z

Keywords

Navigation