, Volume 96, Issue 1, pp 61-74
Date: 29 Dec 2007

Excess copper induces anoxygenic photosynthesis in Anabaena doliolum: a homology based proteomic assessment of its survival strategy

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This study is the first to demonstrate operation of anoxygenic photosynthesis in copper acclimated Anabaena doliolum and to offer proteomic comparison with the control cells. The Cu-treated control strain showed a negative correlation in growth and intracellular Cu, partial inhibition of O2-evolution, PS II, PS I, whole chain, chlorophyll absorption, and nitrogenase activity. However, the acclimated strain growing in 250-fold excess Cu exhibited near normal growth, ATP content, PS I activity, carbon fixation, and almost complete inhibition of O2-evolution, PS II and chlorophyll absorption, but increased nitrogenase activity as compared to control. Proteomic decoding of the survival strategy of Cu-treated control and the acclimated strain using two-dimensional gel electrophoresis and MALDI-TOF MS analysis of proteins displaying significant and reproducible changes demonstrated involvement of transketolase, phycoerythrocyanin α-chain, iron superoxide dismutase (Fe-SOD), hypothetical protein alr 0803, manganese superoxide dismutase (Mn-SOD), phosphoribulokinase, and plastocyanin (PLC). Expression pattern of these proteins was attested at the transcriptional level using RT-PCR. Time course analysis of proteins of Cu-treated control strain revealed almost no change in PLC level, and a minor accumulation of transketolase, phycoerythrocyanin α-chain and both isoforms of SOD after 7 and recovery after 10 days. Acclimated strain under excess Cu, however, exhibited significant accumulation of both isoforms of SOD, plastocyanin, phosphoribulokinase and transketolase, which seem to counteract oxidative damage, serve as an alternate electron carrier from cytochrome b6/f complex to photosystem I and meet the NADPH and ATP requirements, respectively, under anoxygenic photosynthesis. In view of the kinetics of the hypothetical protein alr0803 (no change in expression level for 7, maximum after 10 and decline after 15 days) its involvement in metal homeostasis is suggested.