Skip to main content

Advertisement

Log in

Influence of detergent concentration on aggregation and spectroscopic properties of light-harvesting complex II

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Aggregation of photosynthetic light-harvesting complexes strongly influences their spectroscopic properties. Fluorescence yield and excited state lifetimes of the main light-harvesting complex (LHC II) of higher plants strongly depend on its aggregation state. Detergents are commonly used to solubilize membrane proteins and/or to circumvent their aggregation in aqueous environments. Nonlinear polarization spectroscopy in the frequency domain (NLPF) was performed with LHC II over a wide concentration range of the mild detergent n-dodecyl β-d-maltoside (β-DM). Additionally, conventional absorption-, fluorescence- and circular dichroism-spectra were measured.

The results indicate that: (i) conventional spectroscopic techniques are not well suited to investigate aggregation effects. NLPF provides a novel approach to overcome this problem: NLPF spectra display dramatic alterations upon even minor β-DM concentration changes. (ii) Commonly used detergent concentrations (around or slightly above the critical micellar concentration) apparently do not lead to complete trimerization of LHC II. A long-wavelength species in the NLPF spectra (peaking at about 685 nm), indicative of residual aggregation, persists up to DM-concentrations of 0.06%. (iii) High-resolution NLPF spectra indicate the existence of a species with a considerably shortened excited state lifetime. (iv) No indication of denaturation was found even at the highest β-DM concentrations used. (v) A specific change in interaction between certain chlorophyll(s) b and a xanthophyll molecule, probably neoxanthin, was detected upon aggregation as well as at higher β-DM concentrations. The results are discussed with respect to the still elusive mechanism of nonradiative dissipation of excess excitation energy in the antenna system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

β-DM:

n-Dodecyl β-d-maltoside

Chl:

Chlorophyll

CMC:

Critical micellar concentration

EET:

Excitation energy transfer

FWHM:

Full width at half-maximum

LHC II:

Light-harvesting complex II

NLPF:

Nonlinear polarization spectroscopy in the frequency domain

RT:

Room temperature

References

  • Barzda V, de Grauw CJ, Vroom J, Kleima FJ, van Grondelle R, van Amerongen H, Gerritsen HC (2001) Fluorescence lifetime heterogeneity in aggregates of LHCII revealed by time-resolved microscopy. Biophys J 81:538–546

    PubMed  CAS  Google Scholar 

  • Bassi R, Silvestri M, Dainese P, Moya I, Giacometti GM (1991) Effects of a non-ionic detergent on the spectral properties and aggregation state of the light-harvesting chlorophyll a/b protein complex (LHCII). J Photochem Photobiol B: Biol 9:335–354

    Article  CAS  Google Scholar 

  • Beenken W, Ehlert J (1998) Subband analysis of molecular electronic transitions by nonlinear polarization spectroscopy in the frequency domain. J Chem Phys 109:10126–10137

    Article  CAS  Google Scholar 

  • Gruszecki WI, Grudzinski W, Gospodarek M, Patyra M, Maksymiec W (2006) Xanthophyll-induced aggregation of LHCII as a switch between light-harvesting and energy dissipation systems. Biochim Biophys Acta 1757:1504–1511

    Article  PubMed  CAS  Google Scholar 

  • Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal AA, Noctor G, Young AJ (1991) Control of the light-harvesting function of chloroplast membranes by aggregation of LHCII chlorophyll protein complex. FEBS Lett 292:1–4

    Article  PubMed  CAS  Google Scholar 

  • Hu ZH, Zhou F, Yang CH (2006) Effect of detergent on aggregation of the light-harvesting chlorophyll a/b complex of photosystem 2 and its impact for carotenoid function and fluorescence quenching. Photosynthetica 44:615–621

    Article  CAS  Google Scholar 

  • Kirchhoff H, Hinz H-J, Rösgen J (2003) Aggregation and fluorescence quenching of chlorophyll a of the light-harvesting complex II from spinach in vitro. Biochim Biophys Acta 1606:105–116

    Article  PubMed  CAS  Google Scholar 

  • Krikunova M, Voigt B, Lokstein H (2002) Direct evidence for excitonically coupled chlorophylls a and b in LHC II of higher plants by non-linear polarization spectroscopy in the frequency domain. Biochim Biophys Acta 1556:1–5

    Article  PubMed  CAS  Google Scholar 

  • Krikunova M, Lokstein H, Leupold D, Hiller RG, Voigt B (2006) Pigment–pigment interactions in PCP of Amphidinium carterae investigated by nonlinear polarization spectroscopy in the frequency domain. Biophys J 90:261–271

    Article  PubMed  CAS  Google Scholar 

  • Krupa Z, Huner NPA, Williams JP, Maissan E, James DR (1987) Development at cold-hardening temperatures. The structure and composition of purified rye light harvesting complex II. Plant Physiol 84:19–24

    PubMed  CAS  Google Scholar 

  • Lambrev PH, Varkonyi Z, Krumova S, Kovacs L, Miloslavina Y, Holzwarth AR, Garab G (2007) Importance of trimer–trimer interactions for the native state of the plant light-harvesting complex II. Biochim Biophys Acta 1767:847–853

    Article  PubMed  CAS  Google Scholar 

  • Lokstein H, Leupold D, Voigt B, Nowak F, Ehlert J, Hoffmann P, Garab G (1995) Nonlinear polarization spectroscopy in the frequency domain of light-harvesting complex II: absorption band substructure and exciton dynamics. Biophys J 69:1536–1543

    Article  PubMed  CAS  Google Scholar 

  • Lokstein H, Tian L, Polle J, DellaPenna D (2002) Xanthophyll biosynthetic mutants of Arabidopsis thaliana: Altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in photosystem II antenna size and stability. Biochim Biophys Acta 1553:309–319

    PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X,Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux CW, Pascal AA, Horton P, Holzwarth AR (1993) Excitation-energy quenching in aggregates of the LHC II chlorophyll-protein complex: a time-resolved study. Biochim Biophys Acta 1141:23–28

    Article  CAS  Google Scholar 

  • Palacios MA, Frese RN, Gradinaru CC, van Stokkum IHM, Premvardhan LL, Horton P, Ruban AV, van Grondelle R, van Amerongen H (2003) Stark spectroscopy of the light-harvesting complex II in different oligomerisation states. Biochim Biophys Acta 1605:83–95

    Article  PubMed  CAS  Google Scholar 

  • Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137

    Article  PubMed  CAS  Google Scholar 

  • Razi Naqvi K (1998) Carotenoid-induced relaxation of the first excited state of antenna chlorophylls. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, vol. I. Kluwer Academic Publ, Dordrecht, pp 265–270

    Google Scholar 

  • Ruban AV, Pascal AA, Robert B (2000) Xanthophylls of the major photosynthetic light-harvesting complex of plants: identification, conformation and dynamics. FEBS Lett 477:181–185

    Article  PubMed  CAS  Google Scholar 

  • Schubert A, Voigt B, Leupold D, Beenken W, Ehlert J, Hoffmann P, Lokstein H (1997) Direct observation of spectral substructure in the Qy-absorption band of light-harvesting complex II by nonlinear polarization spectroscopy in the frequency domain at low temperature. Biochim Biophys Acta 1321:195–199

    Article  CAS  Google Scholar 

  • Standfuss J, Terwischa van Scheltinga AC, Lamborghini M, Kühlbrandt W (2005) Mechanism of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24:919–928

    Article  PubMed  CAS  Google Scholar 

  • Szabó I, Bergantino E, Giacometti GM (2005) Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation. EMBO Rep 6:629–634

    Article  PubMed  CAS  Google Scholar 

  • Vasil’ev S, Irrgang K-D, Schrötter T, Bergmann A, Eichler H-J, Renger G (1997) Quenching of chlorophyll-a fluorescence in the aggregates of LHC II: Steady state fluorescence and picosecond relaxation kinetics. Biochemistry 36:7503–7512

    Article  PubMed  CAS  Google Scholar 

  • Voigt B, Irrgang K-D, Ehlert J, Beenken W, Renger G, Leupold D, Lokstein H (2002) Spectral substructure and excitonic interactions in the minor photosystem II antenna complex CP29 as revealed by non-linear polarization spectroscopy in the frequency domain. Biochemistry 41:3049–3056

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Zhang P, Wang C, Liu Z, Chang W (2007) Two lutein molecules in LHCII have different conformations and functions: Insights into the molecular mechanism of thermal dissipation in plants. Biochem Biophys Res Commun 355:457–463

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (SFB 429, TP A2) is gratefully acknowledged. The authors thank Prof. Dr. W. I. Gruszecki for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Lokstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voigt, B., Krikunova, M. & Lokstein, H. Influence of detergent concentration on aggregation and spectroscopic properties of light-harvesting complex II. Photosynth Res 95, 317–325 (2008). https://doi.org/10.1007/s11120-007-9250-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9250-5

Keywords

Navigation