, Volume 86, Issue 1-2, pp 283-296

A Fluorescence Detected Magnetic Resonance Investigation of the Carotenoid Triplet States Associated with Photosystem II of Isolated Spinach Thylakoid Membranes

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The carotenoid triplet populations associated with the fluorescence emission chlorophyll forms of Photosystem II have been investigated in isolated spinach thylakoid membranes by means of fluorescence detected magnetic resonance in zero field (FDMR). The spectra collected in the 680–690 nm emission range, have been fitted by a global analysis procedure. At least five different carotenoid triplet states coupled to the terminal emitting chlorophyll forms of PS II, peaking at 682 nm, 687 nm and 692 nm, have been characterised. The triplets associated with the outer antenna emission forms, at 682 nm, have zero field splitting parameters |D| = 0.0385 cm−1, |E| = 0.00367 cm−1; |D| = 0.0404 cm−1, |E| = 0.00379 cm−1 and |D| = 0.0386 cm−1, |E| = 0.00406 cm−1 which are very similar to those previously reported for the xanthophylls of the isolated LHC II complex. Therefore the FDMR spectra recorded in this work provide insights into the organisation of the LHC II complex in the unperturbed environment represented by thylakoid membranes. The additional carotenoid triplet populations, detected by monitoring the chlorophyll emission at 687 and 692 nm, are assigned to carotenoids bound to inner antenna complexes and hence attributed to β-carotene molecules.