Skip to main content
Log in

Gaussian Estimates for the Solutions of Some One-dimensional Stochastic Equations

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Using covariance identities based on the Clark-Ocone representation formula we derive Gaussian density bounds and tail estimates for the probability law of the solutions of several types of stochastic differential equations, including Stratonovich equations with boundary condition and irregular drifts, and equations driven by fractional Brownian motion. Our arguments are generally simpler than the existing ones in the literature as our approach avoids the use of the inverse of the Ornstein-Uhlenbeck operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aboura, O., Bourguin, S.: Density estimates for solutions to one dimensional backward SDE’s. Potential Anal. 38(2), 573–587 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Besalú, M., Kohatsu-Higa, A., Tindel, S.: Gaussian type lower bounds for the density of solutions of SDEs driven by fractional Brownian motions, to appear in The Annals of Probability. arXiv:1310.5798 (2013)

  3. Donati-Martin, C.: Equations différentielles stochastiques dans \(\mathbb {R}\) avec conditions aux bords. Stochastics and Stochastics Reports 35(3), 143–173 (1991)

    Article  MathSciNet  Google Scholar 

  4. Houdré, C., Privault, N.: Concentration and deviation inequalities in infinite dimensions via covariance representations. Bernoulli 8(6), 697–720 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Kohatsu-Higa, A., Makhlouf, A.: Estimates for the density of functionals of SDEs with irregular drift. Stochastic Process. Appl. 123(5), 1716–1728 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kohatsu-Higa, A., Tanaka, A.: A Malliavin calculus method to study densities of additive functionals of SDEs with irregular drifts. Ann. Inst. H. Poincaré Probab. Statist. 48(3), 871–883 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nourdin, I., Peccati, G.: Stein’s method on Wiener chaos. Probab. Theory Related Fields 145(1-2), 75–118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nourdin, I., Viens, F.G.: Density formula and concentration inequalities with Malliavin calculus. Electron. J. Probab. 14, 2287–2309 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nualart, D.: The Malliavin calculus and related topics. Probability and its Applications, second. Springer, Berlin (2006)

    Google Scholar 

  10. Nualart, D., Quer-Sardanyons, L.: Gaussian density estimates for solutions to quasi-linear stochastic partial differential equations. Stochastic Process. Appl. 119(11), 3914–3938 (2009)

    Article  MathSciNet  Google Scholar 

  11. Nualart, D., Quer-Sardanyons, L.: Optimal Gaussian density estimates for a class of stochastic equations with additive noise. Inf. Dim. Anal., Quantum Prob., and Rel. Topics 14(1), 25–34 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ocone, D., Pardoux, É.: A generalized Itô-Ventzell formula. Application to a class of anticipating stochastic differential equations. Ann. Inst. H. Poincaré Probab. Statist. 25(1), 39–71 (1989)

    MathSciNet  MATH  Google Scholar 

  13. Privault, N.: Stochastic Analysis in Discrete and Continuous Settings, volume 1982 of Lecture Notes in Mathematics, p 309. Springer, Berlin (2009)

    Google Scholar 

  14. Privault, N., Torrisi, G.L.: Probability approximation by Clark-Ocone covariance representation. Electron. J. Probab. 18, 1–25 (2013)

    Article  MathSciNet  Google Scholar 

  15. Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields 111, 333–374 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zambrini, J.C.: The reserach program of stochastic deformation (with a view towards Geometric Mechanics). Available at . To appear in Stochastic analysis, a series of lectures, Birkhäuser, Berlin. arXiv:1212.4186

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Luca Torrisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.D., Privault, N. & Torrisi, G.L. Gaussian Estimates for the Solutions of Some One-dimensional Stochastic Equations. Potential Anal 43, 289–311 (2015). https://doi.org/10.1007/s11118-015-9472-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-015-9472-7

Keywords

Mathematical Subject Classification (2010)

Navigation