1.

A. Cabada, L. Sanchez, *A positive operator approach to the Neumann problem for a second order ordinary differential equation*, J. Math. Anal. Appl., **204** (1996), 774–785.

2.

A. Cabada, R.L. Pouso, *Existence result for the problem (ϕ(u′))′ = f(t, u, u′) with periodic and Neumann boundary conditions*, Nonlinear Anal., **30** (1997), 1733–1742.

3.

A. Cabada, P. Habets, R.L. Pouso, *Optimal existence conditions for ϕ-Laplacian equations with upper and lower solutions in the reversed order*, J. Differ. Equ., **166** (2000), 385–401.

4.

A. Cabada, P. Habets, S. Lois, *Monotone method for the Neumann problem with lower and upper solutions in the reverse order*, Appl. Math. Comput., **117** (2001), 1–14.

5.

M. Cherpion, C. De Coster, P. Habets, *A constructive monotone iterative method for second order BVP in the presence of lower and upper solutions*, Appl. Math. Comput., **123** (2001), 75–91.

6.

J. Chu, Y. Sun, H. Chen, *Positive solutions of Neumann problems with singularities*, J. Math. Anal. Appl., **337** (2008), 1267–1272.

7.

H. Dang, S.F. Oppenheimer, *Existence and uniqueness results for some nonlinear boundary value problems*, J. Math. Anal. Appl., **198** (1996), 35–48.

8.

K. Deimling, *Nonlinear Functional Analysis*, Springer, New York (1985).

9.

Y. Dong, *A Neumann problem at resonance with the nonlinearity restricted in one direction*, Nonlinear Anal., **51** (2002), 739–747.

10.

L.H. Erbe, H. Wang, *On the existence of positive solutions of ordinary differential equations*, Proc. Am. Math. Soc., **120** (1994), 743–748.

11.

D. Jiang, H. Liu, *Existence of positive solutions to second order Neumann boundary value problem*, J. Math. Res. Expos., **20** (2000), 360–364.

12.

D. Jiang, J. Chu, D. O’Regan, R.P. Agarwal, *Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces*, J. Math. Anal. Appl., **286** (2003), 563–576.

13.

R. Ma, *Existence of positive radial solutions for elliptic systems*, J. Math. Anal. Appl., **201** (1996), 375–386.

14.

I. Rachůnková, S. Staňek, *Topological degree method in functional boundary value problems at resonance*, Nonlinear Anal., **27** (1996), 271–285.

15.

I. Rachůnková, *Upper and lower solutions with inverse inequality*, Ann. Polon. Math., **65** (1997), 235–244.

16.

J. Sun, W. Li, *Multiple positive solutions to second order Neumann boundary value problems*, Appl. Math. Comput., **146** (2003), 187–194.

17.

N. Yazidi, *Monotone method for singular Neumann problem*, Nonlinear Anal., **49** (2002), 589–602.