, Volume 19, Issue 1, pp 45-61
Date: 18 Jul 2009

Longitudinal dispersion in wave-current-vegetation flow

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

The flow, turbulence, and longitudinal dispersion in wave-current flow through submerged vegetation are experimentally examined. Laboratory experiments are carried out by superimposing progressive waves on a steady flow through simulated submerged vegetation. The resultant wave-current-vegetation interaction shows strong interface shear with increase in the velocity due to the wave-induced drift. The increase in turbulence in the region of vegetation is found to be about twice higher than in the no-wave case due to the additional mixing by wave motions. Solute experiments are conducted to quantify the wave-current-vegetation longitudinal dispersion coefficient (WCVLDC) by the routing method and by defining length and velocity scales for the wave-current-vegetation flow. An empirical expression for the WCVLDC is proposed. Although the increase in vertical diffusivity is observed as compared with bare-bed channels, the shear effect is stronger, which increases the value of the WCVLDC. The study can be a guideline to understand the combined hydrodynamics of waves, current, and vegetation and quantify the longitudinal dispersion therein.