Skip to main content

Advertisement

Log in

Expression of An Antisense Brassica oleracea GIGANTEA (BoGI) Gene in Transgenic Broccoli Causes Delayed Flowering, Leaf Senescence, and Post-Harvest Yellowing Retardation

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop all over the world. However, rapid post-harvest senescence in harvested floral heads reduces its value. Mutation in GIGANTEA (GI) caused delay of flowering and increased tolerance level to H2O2-induced oxidative stress in Arabidopsis. BoGI, a GI orthologue, was isolated and characterized from B. oleracea. BoGI mRNA is expressed throughout development and can be detected in leaves, stem, root, and flowers. Further analysis indicated that the expression of BoGI is modulated by the circadian clock. To investigate the senescence flowering-associated mechanism regulated by BoGI gene and the agricultural application of BoGI in controlling flowering time and floret yellowing for B. oleracea, constructs containing antisense cDNA of BoGI driven by 35S or a flower-specific AP1 promoter were transformed into B. oleracea and the transgenic plants were generated. The flowering time and the senescence of the detached leaves were significantly delayed in transgenic 35S::BoGI antisense plants. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis showed that clear reduction of BoGI expression was observed in these 35S::BoGI antisense plants compared to that in wild-type plants. Furthermore, post-harvest yellow and flower senescence was delayed in AP1::BoGI antisense plants. These findings indicate that BoGI could be involved in regulation of flowering time, leaf, floret, and flower senescence in broccoli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aida R, Yoshida T, Ichimura K, Goto R, Shibata M (1998) Extension of flower longevity in transgenic torenia plants incorporating ACC oxidase transgene. Plant Sci 138:91–101

    Article  CAS  Google Scholar 

  • Amasino RM (1996) Control of flowering time in plants. Curr Opin Genet Dev 6:480–487

    Article  CAS  PubMed  Google Scholar 

  • Araki T (2001) Transition from vegetative to reproductive phase. Curr Opin Plant Biol 4:63–68

    Article  CAS  PubMed  Google Scholar 

  • Araki T, Komeda Y (1993) Analysis of the role of the late flowering locus, GI, in the flowering of Arabidopsis thaliana. Plant J 3:231–239

    Article  Google Scholar 

  • Ayub R, Guis M, Amor MB, Gillot L, Roustan JP, Latche A, Bouzayen M, Pech JC (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol 14:862–866

    Article  CAS  PubMed  Google Scholar 

  • Barth C, Tullio MD, Conklin PL (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot 57:1657–1665

    Article  CAS  PubMed  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199

    Article  Google Scholar 

  • Cao SQ, Ye M, Jiang ST (2005) Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep 24:683–690

    Article  CAS  PubMed  Google Scholar 

  • Cao SQ, Jiang ST, Zhang RX (2006) The role of GIGANTEA gene in mediating the oxidative stress response and in Arabidopsis. Plant Growth Regul 48:261–270

    Article  CAS  Google Scholar 

  • Cao SQ, Song YQ, Su L (2007) Freezing sensitivity in the gigantean mutant of Arabidopsis is associated with sugar deficiency. Biol Plant 51:359–362

    Article  CAS  Google Scholar 

  • Cao J, Shelton AM, Earle ED (2008) Sequential transformation to pyramid two Bt genes in vegetable Indian mustard (Brassica juncea L.) and its potential for control of diamondback moth larvae. Plant Cell Rep 27:479–487

    Article  CAS  PubMed  Google Scholar 

  • Chen LFO, Hwang JY, Charng YY, Sun CW, Yang SF (2001) Transformation of broccoli (Brassica oleracea var. italica) with isopentenyltransferase gene via Agrobacterium tumefaciens for postharvest yellowing retardation. Mol Breed 7:243–257

    Article  CAS  Google Scholar 

  • Chen LFO, Huang JY, Wang YH, Chen YT, Shaw JF (2004) Ethylene insensitivity and postharvest yellowing retardation in mutant ethylene response sensor (boers) gene transformed broccoli (Brassica oleracea var. italica.). Mol Breed 14:199–213

    Article  Google Scholar 

  • Chen LFO, Lin CH, Kelkar SM, Chang YM, Shaw JF (2008) Transgenic broccoli (Brassica oleracea var. italica) with antisense chlorophyllase (BoCLH1) delays postharvest yellowing. Plant Sci 174:25–31

    Article  CAS  Google Scholar 

  • Chou ML, Yang CH (1998) FLD interacts with genes that affect different developmental phase transitions to regulate Arabidopsis shoot development. Plant J 15:231–242

    Article  CAS  PubMed  Google Scholar 

  • Christou P (1996) Transformation technology. Trends Biotechnol 1:423–431

    Google Scholar 

  • Clarke SF, Jameson PE, Downs C (1994) The influence of 6-benzyl-aminopurine on post-harvest senescence of floral tissues of broccoli Brassica oleracea var. italica. Plant Growth Regul 14:21–27

    Article  CAS  Google Scholar 

  • Corcuff R, Arul J, Hamza F, Castaigne F, Makhlouf J (1996) Storage of broccoli florets in ethanol vapor enriched atmosphere. Postharvest Biol Technol 7:219–229

    Article  Google Scholar 

  • Coupe SA, Sinclair BK, Watson LM, Heyes JA, Eason JR (2003) Identification of dehydration-responsive cysteine proteases during post-harvest senescence of broccoli florets. J Exp Bot 54:1045–1056

    Article  CAS  PubMed  Google Scholar 

  • Curtis IS, Nam HG, Yun JY, Seo KH (2002) Expression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering. Transgenic Res 11:249–256

    Article  CAS  PubMed  Google Scholar 

  • De Block M, De Brouwer D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression bar and new genes in transgenic plants. Plant Physiol 91:694–701

    Article  PubMed Central  PubMed  Google Scholar 

  • Eason JR, Ryan DJ, Watson LM, Hedderley D, Christey MC, Braun RH, Coupe SA (2005) Suppression of the cysteine protease, aleurain, delays floret senescence in Brassica oleracea. Plant Mol Biol 57:645–657

    Article  CAS  PubMed  Google Scholar 

  • Edwards KD, Lynn JR, Gyula P, Nagy F, Millar AJ (2005) Natural allelic variation in the temperature compensation mechanisms of the Arabidopsis thaliana circadian clock. Genetics 170:387–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci U S A 94:10367–10372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, Stephenson KK, Talalay P, Lozniewski A (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyreneinduced stomach tumors. Proc Natl Acad Sci U S A 99:7610–7615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gamborg O, Miller R, Ojima K (1968) Nutrients requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gan S, Amasino RM (1997) Making sense of senescence. Molecular genetic regulation and manipulation of leaf senescence. Plant Physiol 113:313–319

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gapper NE, Coupe CA, McKenzie MJ, Sinclair BK, Lill RE, Jameson PE (2005a) Regulation of harvest-induced senescence in broccoli (Brassica oleracea var. italica) by cytokinin, ethylene, and sucrose. J Plant Growth Regul 24:153–165

    Article  CAS  Google Scholar 

  • Gapper NE, Coupe SA, McKenzie MJ, Scott RW, Christey MC, Lill RE, McManus MT, Jameson PE (2005b) Senescence-associated down-regulation of 1-aminocyclopropane-1-carboxylate (ACC) oxidase delays harvest-induced senescence in broccoli. Funct Plant Biol 32:891–901

    Article  CAS  Google Scholar 

  • Gillies SL, Toivonen PMA (1995) Cooling method influences the postharvest quality of broccoli. HortSci 30:313–315

    Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:170–180

    Article  Google Scholar 

  • Gould PD, Locke JCW, Larue C, Southern MM, Davis SJ, Hanano S, Moyle R, Milich R, Putterill J, Millar AJ, Hall A (2006) The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 18:1177–1187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gray J, Picton S, Shabbeer J, Schuch W, Frierson D (1992) Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Mol Biol 19:69–87

    Article  CAS  PubMed  Google Scholar 

  • Henzi MX, Christey MC, McNeil DL, Davies KM (1999) Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica) with an antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene. Plant Sci 143:55–62

    Article  CAS  Google Scholar 

  • Higgins JD, Newbury HJ, Barbara DJ, Muthumeenakshi S, Puddephat IJ (2006) The production of marker-free genetically engineered broccoli with sense and antisense ACC synthase 1 and ACC oxidase 1 and 2 to extend shelf-life. Mol Breed 17:7–20

    Article  CAS  Google Scholar 

  • Huq E, Tepperman JM, Quail PH (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci U S A 97:9789–9794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  CAS  PubMed  Google Scholar 

  • Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449:356–360

    Article  CAS  PubMed  Google Scholar 

  • Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z, Ning L, Park HC, Lee SY, Bressan RA, Pardo JM, Bohnert HJ, Yun DJ (2013) Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun 4:1352–1364

    Article  PubMed  Google Scholar 

  • Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66

    Article  CAS  PubMed  Google Scholar 

  • Kurepa J, Smalle J, Van Montagu M, Inze D (1998) Effects of sucrose supply on growth and paraquat tolerance of the late-flowering gi- 3 mutant. Plant Growth Regul 26:91–96

    Article  CAS  Google Scholar 

  • Leshem YY (1988) Plant senescence processes and free radicals. Free Rad Biol Med 5:39–49

    Article  CAS  PubMed  Google Scholar 

  • Levy YY, Dean C (1998) The transition to flowering. Plant Cell 10:1973–1990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lim PO, Woo HR, Nam HG (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 8:272–278

    Article  CAS  PubMed  Google Scholar 

  • McHughen A, Jordan M, Feist G (1989) A preculture period prior to Agrobacterium inoculation increase production of transgenic plants. J Plant Physiol 135:245–248

    Article  Google Scholar 

  • Metz TD, Dixit R, Earle ED (1995) Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Rep 15:287–292

    CAS  PubMed  Google Scholar 

  • Mittag M, Kiaulehn S, Johnson CH (2005) The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? Plant Physiol 137:399–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Noodén LD, Leopold AC (1978) Phytohormones and the endogenous regulation of senescence and abscission. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds: A comprehensive treatise, vol II. Elsevier, Amsterdam, pp 329–369

    Google Scholar 

  • Oeller PA, Ming-Wong L, Taylor L, Pike DA, Theologis A (1991) Reversible inhibition of fruit senescence by antisense RNA. Science 254:437–439

    Article  CAS  PubMed  Google Scholar 

  • Page T, Griffiths G, Buchanan-Wollaston V (2001) Molecular and biochemical characterization of postharvest senescence in broccoli. Plant Physiol 125:718–727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579–1582

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Sikdar SR (1999) Expression of npt II marker and gus reporter genes and their inheritance in subsequent generations of transgenic Brassica developed through Agrobacterium mediated gene transfer. Curr Sci 76:1569–1573

    CAS  Google Scholar 

  • Pogson BJ, Downs CG, Davies KM (1995) Differential expression of two 1-aminocyclopropane-1-carboxylic acid oxidase genes in broccoli after harvest. Plant Physiol 108:651–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Potrykus I (1991) Gene transfer to plants: assessment of published approaches and results. Annu Rev Plant Physiol Plant Mol Biol 432:205–225

    Article  Google Scholar 

  • Pramanik BK, Matsui T, Suzuki H, Kosugi Y (2005) A sucrose synthase gene from broccoli: cDNA cloning sequencing and its expression during storage. Biotechnology 4:288–295

    Article  CAS  Google Scholar 

  • Rédei GP (1962) Supervital mutants of Arabidopsis. Genetics 47:443–460

    PubMed Central  PubMed  Google Scholar 

  • Reeves PH, Coupland G (2000) Response of plant development to environment: control of flowering by daylength and temperature. Curr Opin Plant Biol 3:37–42

    Article  CAS  PubMed  Google Scholar 

  • Rushing JW (1990) Cytokinins affect respiration, ethylene production, and chlorophyll retention of packaged broccoli florets. HortSci 25:88–90

    CAS  Google Scholar 

  • Sangwan RS, Bourgeois Y, Brown S, Vasseur G, Sangwan-Norreel B (1992) Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana. Planta 188:439–456

    Article  CAS  PubMed  Google Scholar 

  • Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285–289

    Article  CAS  PubMed  Google Scholar 

  • Smith CJS, Watson CF, Ray J, Bird CR, Morris PC, Schuch W, Grierson D (1988) Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334:724–726

    Article  CAS  Google Scholar 

  • Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    Article  PubMed  Google Scholar 

  • Tian MS, Davies L, Downs CG, Liu XF, Lill RE (1995) Effects of floret maturity, cytokinin and ethylene on broccoli yellowing after harvest. Postharvest Biol Tech 6:29–40

    Article  CAS  Google Scholar 

  • van Doorn WG, Woltering EJ (2004) Senescence and programmed cell death: substance or semantics? J Exp Bot 55:2147–2153

    Article  PubMed  Google Scholar 

  • Villemont E, Dubois F, Sangwan RS, Vasseur G, Bourgeois Y, Sangwan-Norreel B (1997) Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer. Planta 201:160–172

    Article  CAS  Google Scholar 

  • Walden R, Wingender R (1995) Gene-transfer and plantregeneration techniques. Trends Biotechnol 13:324–331

    Article  CAS  Google Scholar 

  • Wang CY (1977) Effect of aminoethoxy analog of rhizobitoxine and sodium benzoate on senescence of broccoli. HortSci 12:54–56

    CAS  Google Scholar 

  • Wu K, Zhang L, Zhou C, Yu CW, Chaikam V (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59:225–234

    Article  CAS  PubMed  Google Scholar 

  • Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Zentgraf U (2005) The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett 10:515–553

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to C-H Y from the Ministry of Science and Technology, Taiwan, ROC, grant numbers: NSC95-2317-B-005-006 and NSC96-2317-B-005-019. This work was also supported in part by the Ministry of Education, Taiwan, ROC, under the ATU plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hsien Yang.

Additional information

Muthu Thiruvengadam and Ching-Fang Shih contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiruvengadam, M., Shih, CF. & Yang, CH. Expression of An Antisense Brassica oleracea GIGANTEA (BoGI) Gene in Transgenic Broccoli Causes Delayed Flowering, Leaf Senescence, and Post-Harvest Yellowing Retardation. Plant Mol Biol Rep 33, 1499–1509 (2015). https://doi.org/10.1007/s11105-015-0852-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0852-3

Keywords

Navigation