Skip to main content
Log in

Identification of Late Blight Resistance-Related Metabolites and Genes in Potato through Nontargeted Metabolomics

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Late blight of potato (Solanum tuberosum) caused by Phytophthora infestans significantly reduces the productivity of potato around the world. Resistance to late blight in potato is either qualitative or quantitative. Qualitative resistance governed by race-specific single R genes is well characterized and gives complete resistance, but is not durable. Quantitative resistance governed by polygenes gives partial resistance, but is durable in nature. However, the quantitative resistance mechanisms are poorly studied and are not efficiently exploited in potato breeding. A nontargeted metabolic profiling of resistant (F06037) and susceptible (Shepody) potato cultivars, using high-resolution liquid chromatography–mass spectrometry, was applied to elucidate the quantitative resistance mechanisms against P. infestans (US-8 genotype). The hydroxycinnamic acid amides (HCAAs) of the shunt phenylpropanoid pathway were highly induced following pathogen inoculation in F06037. In parallel, the transcript abundances of genes that catalyze the biosynthesis of these metabolites, such as 4-coumarate:CoA ligase, tyrosine decarboxylase, ornithine decarboxylase, tyramine hydroxycinnamoyl transferase, and putrescine hydroxycinnamoyl transferase, were also higher in the resistant genotype. Sequencing of the coding genes of these enzymes revealed single-nucleotide polymorphisms between resistant and susceptible genotypes, and the amino acid changes caused missense mutations altering protein functions. HCAAs deposited at host cell walls inhibit pathogen colonization, thus reducing lesion expansion. In addition, these also act as phytoalexins, leading to the reduced biomass of the pathogen. Following validation, the HCAAs can be used as biomarker metabolites for late blight resistance. The putative candidate genes can be either used to develop allele-specific markers for marker-assisted breeding programs or suitably stacked into elite cultivars through cisgenic approaches, following validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu-Nada KAC (2010) Metabolic profiling to phenotype potato cultivars varying in horizontal resistance to leaf infection by Phytophthora infestans. Am J Plant Sci Biotechnol 4(2):55–64

    Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Google Scholar 

  • Andrivon D, Corbière R, Lucas JM, Pasco C, Gravoueille JM, Pellé R, Dantec JP, Ellissèche D (2003) Resistance to late blight and soft rot in six potato progenies and glycoalkaloid contents in the tubers. Am J Potato Res 80(2):125–134

    Article  CAS  Google Scholar 

  • Arman M (2011) LC-ESI-MS characterisation of phytoalexins induced in chickpea and pea tissues in response to a biotic elicitor of Hypnea musciformis (red algae). Nat Prod Res 25(14):1352–1360

    Article  CAS  PubMed  Google Scholar 

  • Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38(suppl 2):W529–W533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bassard JE, Ullmann P, Bernier F, Werck-Reichhart D (2010) Phenolamides: bridging polyamines to the phenolic metabolism. Phytochemistry 71(16):1808–1824

    Article  CAS  PubMed  Google Scholar 

  • Bernards MA, Lopez ML, Zajicek J, Lewis NG (1995) Hydroxycinnamic acid-derived polymers constitute the polyaromatic domain of suberin. J Biol Chem 270(13):7382–7386

    Article  CAS  PubMed  Google Scholar 

  • Birch PRJ, Bryan G, Fenton B, Gilroy EM, Hein I, Jones JT, Prashar A, Taylor MA, Torrance L, Toth IK (2012) Crops that feed the world 8: Potato: are the trends of increased global production sustainable? Food Security 4:477–508

  • Blount JW, Dixon RA, Paiva NL (1992) Stress responses in alfalfa (Medicago sativa L.) XVI. Antifungal activity of medicarpin and its biosynthetic precursors; implications for the genetic manipulation of stress metabolites. Physiol Mol Plant Pathol 41(5):333–349

    Article  CAS  Google Scholar 

  • Bollina V, Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S, Faubert D, Hamzehzarghani H (2010) Mass spectrometry–based metabolomics application to identify quantitative resistance–related metabolites in barley against Fusarium head blight. Mol Plant Pathol 11(6):769–782

    CAS  PubMed  Google Scholar 

  • Bryant D, Cummins I, Dixon DP, Edwards R (2006) Cloning and characterization of a theta class glutathione transferase from the potato pathogen Phytophthora infestans. Phytochemistry 67(14):1427–1434

    Article  CAS  PubMed  Google Scholar 

  • Cho K, Kim Y, Wi SJ, Seo JB, Kwon J, Chung JH, Park KY, Nam MH (2012) Nontargeted metabolite profiling in compatible pathogen-inoculated tobacco (Nicotiana tabacum L. cv. Wisconsin 38) using UPLC-Q-TOF/MS. J Agric Food Chem 60(44):11015–11028

    Article  CAS  PubMed  Google Scholar 

  • Clarke D (1982) The accumulation of cinnamic acid amides in the cell walls of potato tissue as an early response to fungal attack. In: Wood RKS (ed) Active defense mechanisms in plants. Plenum, London, 321 pp

    Google Scholar 

  • Cowley T, Walters D (2002) Polyamine metabolism in barley reacting hypersensitively to the powdery mildew fungus Blumeria graminis f. sp. hordei. Plant Cell Environ 25(3):461–468

    Article  CAS  Google Scholar 

  • El-Bebany AF, Adam LR, Daayf F (2013) Differential accumulation of phenolic compounds in potato in response to weakly and highly aggressive isolates of Verticillium dahliae. Can J Plant Pathol 35(2):232–240

    Article  CAS  Google Scholar 

  • Fewell AM, Roddick JG (1997) Potato glycoalkaloid impairment of fungal development. Mycol Res 101(5):597–603

    Article  CAS  Google Scholar 

  • Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48(1–2):155–171

    Article  CAS  PubMed  Google Scholar 

  • Fleurence J, Negrel J (1989) Partial purification of tyramine feruloyl transferase from TMV inoculated tobacco leaves. Phytochemistry 28(3):733–736

    Article  CAS  Google Scholar 

  • Friedman M (2006) Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J Agric Food Chem 54(23):8655–8681

    Article  CAS  PubMed  Google Scholar 

  • Fry W (2008) Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol 9(3):385–402

    Article  PubMed  Google Scholar 

  • Fry WE, Goodwin SB (1997) Resurgence of the Irish potato famine fungus. BioScience 47:363–371

    Google Scholar 

  • Gebhardt C (2012) Bridging the gap between genome analysis and precision breeding in potato. Trends Genet 29:248–256

    Google Scholar 

  • González-Coloma A, López-Balboa C, Santana O, Reina M, Fraga BM (2011) Triterpene-based plant defenses. Phytochem Rev 10(2):245–260

    Article  Google Scholar 

  • Gunnaiah R, Kushalappa AC, Duggavathi R, Fox S, Somers DJ (2012) Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS ONE 7(7):e40695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hagel JM, Facchini PJ (2005) Elevated tyrosine decarboxylase and tyramine hydroxycinnamoyltransferase levels increase wound-induced tyramine-derived hydroxycinnamic acid amide accumulation in transgenic tobacco leaves. Planta 221(6):904–914

    Article  CAS  PubMed  Google Scholar 

  • Haverkort A, Struik P, Visser RGF, Jacobsen E (2009) Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res 52(3):249–264

    Article  Google Scholar 

  • Katagiri Y, IBRAHIM RK, TAHARA S (2000) HPLC analysis of white lupin isoflavonoids. Biosci Biotechnol Biochem 64(6):1118–1125

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Heinzel N, Schöttner M, Baldwin IT, Gális I (2010) R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiol 152(3):1731–1747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keller H, Hohlfeld H, Wray V, Hahlbrock K, Scheel D, Strack D (1996) Changes in the accumulation of soluble and cell wall-bound phenolics in elicitor-treated cell suspension cultures and fungus-infected leaves of Solanum tuberosum. Phytochemistry 42(2):389–396

    Article  CAS  Google Scholar 

  • Kolattukudy P (1981) Structure, biosynthesis, and biodegradation of cutin and suberin. Annu Rev Plant Physiol 32(1):539–567

    Article  CAS  Google Scholar 

  • Kolattukudy P (1984) Biochemistry and function of cutin and suberin. Can J Bot 62(12):2918–2933

    Article  CAS  Google Scholar 

  • Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13(2):181–185

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protocol 4(7):1073–1081

    Article  CAS  Google Scholar 

  • Kumaraswamy GK, Bollina V, Kushalappa AC, Choo TM, Dion Y, Rioux S, Mamer O, Faubert D (2011) Metabolomics technology to phenotype resistance in barley against Gibberella zeae. Eur J Plant Pathol 130(1):29–43

    Article  CAS  Google Scholar 

  • Kushalappa AC, Gunnaiah R (2013) Metabolo-proteomics to discover plant biotic stress resistance genes. Trends Plant Sci 18:522–531

    Article  CAS  PubMed  Google Scholar 

  • Langebartels C, Kerner K, Leonardi S, Schraudner M, Trost M, Heller W, Sandermann H (1991) Biochemical plant responses to ozone I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol 95(3):882–889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menden B, Kohlhoff M, Moerschbacher BM (2007) Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response. Phytochemistry 68(4):513–520

    Article  CAS  PubMed  Google Scholar 

  • Mustafa NR, Verpoorte R (2007) Phenolic compounds in Catharanthus roseus. Phytochem Rev 6(2):243–258

    Article  CAS  Google Scholar 

  • Naoumkina MA, Zhao Q, Gallego-giraldo L, Dai X, Zhao PX, Dixon RA (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11(6):829–846

    Google Scholar 

  • Negrel J, Pollet B, Lapierre C (1996) Ether-linked ferulic acid amides in natural and wound periderms of potato tuber. Phytochemistry 43(6):1195–1199

    Article  CAS  Google Scholar 

  • Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nick A, Wright AD, Rali T, Sticher O (1995) Antibacterial triterpenoids from Dillenia papuana and their structure–activity relationships. Phytochemistry 40(6):1691–1695

    Article  CAS  PubMed  Google Scholar 

  • Nicot N, Hausman J-F, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56(421):2907–2914

    Article  CAS  PubMed  Google Scholar 

  • Osbourn AE (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8(10):1821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Picman AK (1986) Biological activities of sesquiterpene lactones. Biochem Syst Ecol 14(3):255–281

    Article  CAS  Google Scholar 

  • Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinforma 11(1):395

    Article  Google Scholar 

  • Ponts N, Pinson-Gadais L, Boutigny A-L, Barreau C, Richard-Forget F (2011) Cinnamic-derived acids significantly affect Fusarium graminearum growth and in vitro synthesis of type B trichothecenes. Phytopathology 101(8):929–934

    Article  CAS  PubMed  Google Scholar 

  • Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez MJ, Kift N, Carbonne F, Griffiths G, Esquerré-Tugayé M-T, Rosahl S (2005) Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol 139(4):1902–1913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ranathunge K, Schreiber L, Franke R (2011) Suberin research in the genomics era—new interest for an old polymer. Plant Sci 180(3):399–413

    Article  CAS  PubMed  Google Scholar 

  • Reina-Pinto JJ, Yephremov A (2009) Surface lipids and plant defenses. Plant Physiol Biochem 47(6):540–549

    Article  CAS  PubMed  Google Scholar 

  • Riley RG, Kolattukudy PE (1975) Evidence for covalently attached p-coumaric acid and ferulic acid in cutins and suberins. Plant Physiol 56(5):650–654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protocol 5(4):725–738

    Article  CAS  Google Scholar 

  • Schauer N, Fernie AR (2006) Plant metabolomics: towards biological function and mechanism. Trend Plant Sci 11(10):508–516

    Article  CAS  Google Scholar 

  • Secor GA, Gudmestad NC (1999) Managing fungal diseases of potato. Can J Plant Pathol 21(3):213–221

    Article  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  Google Scholar 

  • Simko I (2002) Comparative analysis of quantitative trait loci for foliage resistance to Phytophthora infestans in tuber-bearing Solanum species. Am J Potato Res 79(2):125–132

    Article  CAS  Google Scholar 

  • Stewart H, Bradshaw J, Pande B (2003) The effect of the presence of R-genes for resistance to late blight (Phytophthora infestans) of potato (Solanum tuberosum) on the underlying level of field resistance. Plant Pathol 52(2):193–198

    Article  Google Scholar 

  • Thomas R, Fang X, Ranathunge K, Anderson TR, Peterson CA, Bernards MA (2007) Soybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojae. Plant Physiol 144(1):299–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25(24):4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153(3):895–905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walters DR (2003) Polyamines and plant disease. Phytochemistry 64(1):97–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was carried out with the aid of a grant from the International Development Research Center, Ottawa, Canada and with the financial support of the Foreign Affairs, Trade and Development Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajjamada C. Kushalappa.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

MS/MS spectra and in silico fragmentation of metabolites detected in potato cultivars with contrasting levels of late blight resistance following P. infestans or mock inoculation. a) p-Coumaroyltyramine, b) sinapoyltyramine. (JPEG 103 kb)

High resolution image

(TIFF 259 kb)

Fig. S2

Resistant related metabolites are clustered in to two groups mainly RRC and RRI. Their chemical groups and fold change are indicated as node shape and color. RRC is resistant related constitutive metabolites, RRI is resistant related induced metabolites and NI and NS is not identified in our study and non-significant at (P < 0.05). (JPEG 57 kb)

High resolution image

(TIFF 15516 kb)

Table S1

Late blight resistance related constitutive metabolites identified in potato cultivars following P. infestans or mock inoculation. (XLS 40 kb)

Table S2

Late blight resistance related induced metabolites identified in potato cultivars following P. infestans or mock inoculation. (XLS 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pushpa, D., Yogendra, K.N., Gunnaiah, R. et al. Identification of Late Blight Resistance-Related Metabolites and Genes in Potato through Nontargeted Metabolomics. Plant Mol Biol Rep 32, 584–595 (2014). https://doi.org/10.1007/s11105-013-0665-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0665-1

Keywords

Navigation