Skip to main content

Advertisement

Log in

Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Biological control is an environmentally sound and effective means of reducing pathogen-induced damage to agriculture using natural antagonists. Paenibacillus is a cosmopolitan and ubiquitously occurring bacterial genus with antagonistic activity against phytopathogens. Many species and strains with promising potential for plant growth promotion and biocontrol of pathogens have been identified since Paenibacillus was first described 20 years ago. Nevertheless, important questions regarding the colonization of plants, and the mode of action of Paenibacillus remain unanswered.

Scope

This review focuses on the occurrence of Paenibacillus in microbial metagenomes, the endophytic lifestyle of Paenibacillus, and the function of Paenibacillus-derived volatile organic compounds (VOCs) combining actual literature with our own results.

Conclusions

This review provides new insights into the endophytic lifestyle of Paenibacillus and discusses strain-specific and system-dependent growth promotion effects on plants. VOCs, in particular pyrazine derivatives emitted by Paenibacillus, showed high activity against other organisms. This suggests that VOCs play an important role in communication and interaction. Overall, Paenibacillus strains demonstrate promising potential not only for sustainable agriculture and biological control, but also as a source for novel bioactive volatiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguilar C, Vlamakis H, Losick R, Kolter R (2007) Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol 10:638–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez VM, von der Weid I, Seldin L, Santos AL (2006) Influence of growth conditions on the production of extracellular proteolytic enzymes in Paenibacillus peoriae NRRL BD-62 and Paenibacillus polymyxa SCE2. Lett Appl Microbiol 43:625–630

    Article  CAS  PubMed  Google Scholar 

  • Anand R, Paul L, Chanway C (2006) Research on endophytic bacteria: recent advances with forest trees. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin Heidelberg, pp 89–106

    Chapter  Google Scholar 

  • Antonopoulos DF, Tjamos SE, Antoniou PP, Rafeletos P, Tjamos EC (2008) Effect of Paenibacillus alvei, strain K165, on the germination of Verticillium dahliae microsclerotia in planta. Biol Control 46:166–170

    Article  Google Scholar 

  • Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wllbanks and Collins) using a PCR probe test. Antonie Van Leeuwenhoek 64:253–260

    Article  CAS  PubMed  Google Scholar 

  • Aswathy AJ, Jasim B, Jyothis M, Radhakrishnan EK (2013) Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa. 3. Biotech 3:219–224

    Google Scholar 

  • Bacon CW, Hinton DM (1997) Isolation and culture of endophytic bacteria and fungi. In: Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, pp 413–421

    Google Scholar 

  • Beatty PH, Jensen SE (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 48:159–169

    Article  CAS  PubMed  Google Scholar 

  • Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci U S A 23:E1621–E1630

    Article  Google Scholar 

  • Beck HC, Hansen AM, Lauritsen FR (2003) Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa. FEMS Microbiol Lett 220:67–73

    Article  CAS  PubMed  Google Scholar 

  • Ben-Jacob E, Becker I, Shapira Y, Levine H (2004) Bacterial linguistic communication and social intelligence. Trends Microbiol 12:366–372

    Article  PubMed  CAS  Google Scholar 

  • Bent E, Chanway CP (1998) The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can J Microbiol 44:980–988

    Article  CAS  Google Scholar 

  • Bent E, Chanway CP (2002) Potential for misidentification of a spore-forming Paenibacillus polymyxa isolate as an endophyte by using culture-based methods. Appl Environ Microbiol 68:4650–4652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Zachow C, Müller H, Philipps J, Tilcher R (2013) Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy 3:648–656

    Article  Google Scholar 

  • Berg G, Grube M, Schloter M, Smalla K (2014) The plant microbiome and its importance for plant and human health. Front Microbiol 5:491

    PubMed  PubMed Central  Google Scholar 

  • Bionda N, Pitteloud JP, Cudic P (2013) Cyclic lipodepsipeptides: a new class of antibacterial agents in the battle against resistant bacteria. Future Med Chem 5:1311–1330

    Article  CAS  PubMed  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Cernava T (2012) Identification of volatile organic compounds from plant-associated bacteria. Graz University of Technology, Master thesis

    Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Cotta SR, da Mota FF, Tupinambá G, Ishida K, Rozental S, Silva DO E, da Silva AJ, Bizzo HR, Alviano DS, Alviano CS, Seldin L (2012) Antimicrobial activity of Paenibacillus kribbensis POC 115 against the dermatophyte Trichophyton rubrum. World J Microbiol Biotechnol 28:953–962

    Article  CAS  PubMed  Google Scholar 

  • Da Mota FF, Gomes EA, Seldin L (2008) Auxin production and detection of the gene coding for the Auxin Efflux Carrier (AEC) protein in Paenibacillus polymyxa. J Microbiol 46:257–264

    Article  PubMed  CAS  Google Scholar 

  • Davies PJ (2010) Plant hormones: biosynthesis, signal transduction, action! 3rd edn. Springer, Dordrecht

    Book  Google Scholar 

  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. PNAS 106:16428–16433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Lu Z, Lu F, Wang Y, Bie X (2011a) Study on an antimicrobial protein produced by Paenibacillus polymyxa JSa-9 isolated from soil. World J Microbiol Biotechnol 27:1803–1807

    Article  CAS  Google Scholar 

  • Deng Y, Lu Z, Lu F, Zhang C, Wang Y, Zhao H, Bie X (2011b) Identification of LI-F type antibiotics and di-n-butyl phthalate produced by Paenibacillus polymyxa. J Microbiol Methods 85:175–182

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Lu Z, Bi H, Lu F, Zhang C, Bie X (2011c) Isolation and characterization of peptide antibiotics LI-F04 and polymyxin B6 produced by Paenibacillus polymyxa strain JSa-9. Peptides 32:1917–1923

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Wang J, Liu Y, Chen S (2005) Isolation and identification of nitrogen‐fixing bacilli from plant rhizospheres in Beijing region. J Appl Microbiol 99:1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Broek AV, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:153–162

    Article  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • El-Deeb B, Fayez K, Gherbawy Y (2013) Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. J Plant Interact 8(1):56–64

    Article  CAS  Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol Lett 171:1–9

    Article  CAS  PubMed  Google Scholar 

  • Erlacher A, Cardinale M, Grosch R, Grube M, Berg G (2014) The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front Microbiol 5:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Fürnkranz M, Lukesch B, Müller H, Huss H, Grube M, Berg G (2012a) Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb Ecol 63:418–428

    Article  PubMed  CAS  Google Scholar 

  • Fürnkranz M, Adam E, Müller H, Grube M, Huss H, Winkler J, Berg G (2012b) Promotion of growth, health and stress tolerance of Styrian oil pumpkins by bacterial endophytes. Eur J Plant Pathol 134:509–519

    Article  Google Scholar 

  • Genersch E (2010) American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. J Invertebr Pathol 103:10–19

    Article  Google Scholar 

  • Giamarellou H, Poulakou G (2009) Multidrug-resistant Gram-negative infections: what are the treatment options? Drugs 69:1879–1901

    Article  CAS  PubMed  Google Scholar 

  • Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2011) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Maheshwari D (ed) Plant growth and health promoting bacteria; microbiology monographs 18. Springer, Berlin Heidelberg, pp 333–364

    Google Scholar 

  • Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, Wegner U, Becher D, Riedel K, Sensen CW, Berg G (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J 9:412–424

    Article  CAS  PubMed  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compante S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, under revision

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holl FB, Chanway CP (1992) Rhizosphere colonization and seedling growth promotion of lodgepole pine by Bacillus polymyxa. Can J Microbiol 38:303–308

    Article  Google Scholar 

  • Ito M, Koyama Y (1972) Jolipeptin, a new peptide antibiotic. II. The mode of action of jolipeptin. J Antibiot 25:309–314

    Article  CAS  PubMed  Google Scholar 

  • Jin HJ, Tu R, Xu F, Chen SF (2011) Identification of nitrogen-fixing Paenibacillus from different plant rhizospheres and a novel nifH gene detected in the P. stellifer. Microbiology 80:117–124

    Article  CAS  Google Scholar 

  • Kajimura Y, Kaneda M (1996) Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot 49:129–135

    Article  CAS  PubMed  Google Scholar 

  • Kajimura Y, Kaneda M (1997) Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J Antibiot 50:220–228

    Article  CAS  Google Scholar 

  • Keita MB, Padhmananabhan R, Caputo A, Robert C, Delaporte E, Raoult D, Bittar F (2014) Non-contiguous finished genome sequence and description of Paenibacillus gorillae sp. nov. Stand Genomic Sci 9:1031–1045

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SB, Timmusk S (2013) A simplified method for Paenibacillus polymyxa gene knockout and insertional screening. PLoS ONE. doi:10.1371/journal.pone.0068092

    Google Scholar 

  • Kimura Y, Murai E, Fujisawa M, Tatsuki T, Nobue F (1969) Polymyxin P, new antibiotics of polymyxin group. J Antibiot 22:449–450

    Article  CAS  PubMed  Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, von Mering C, Vorholt JA (2011) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Köberl M, Müller H, Ramadan EM, Berg G (2011) Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One 6, e24452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Köberl M, Ramadan EM, Adam M, Cardinale M, Hallmann J, Heuer H, Smalla K, Berg G (2013) Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiol Lett 342:168–178

    Article  PubMed  CAS  Google Scholar 

  • Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2004) Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48:772–786

    Article  Google Scholar 

  • Kurusu K, Ohba K, Arai T, Fukushima K (1987) New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa. I. Isolation and characterization. J Antibiot 40:1506–1514

    Article  CAS  PubMed  Google Scholar 

  • Lal S, Tabacchioni S (2009) Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J Microbiol 49:2–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landman D, Georgescu C, Martin DA, Quale J (2008) Polymyxins revisited. Clin Microbiol Rev 21:449–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebuhn M, Heulin T, Hartmann A (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol 22:325–334

    Article  CAS  Google Scholar 

  • Lee B, Farag MA, Park HB, Kloepper JW, Lee SH, Ryu CM (2012) Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS One 7, e48744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehninger AL (1975) Biochemistry: the molecular basis of cell structure and function. Worth, New York

    Google Scholar 

  • Liu WW, Mu W, Zhu BY, Du YC, Liu F (2008) Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agric Sci China 7:1104–1114

    Article  CAS  Google Scholar 

  • Logares R, Sunagawa S, Salazar G, Cornejo‐Castillo FM, Ferrera I, Sarmento H, Hingamp P, Ogata H, de Vargas C, Lima-Mendez G, Raes J, Poulain J, Jaillon O, Wincker P, Kandels-Lewis S, Karsteni E, Acinas SG (2014) Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol 16:2659–2671

    Article  CAS  PubMed  Google Scholar 

  • López D, Vlamakis H, Losick R, Kolter R (2009) Cannibalism enhances biofilm development in Bacillus subtilis. Mol Microbiol 74:609–618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ludwig-Müller J (2014) Auxin homeostasis, signaling and interaction with other growth hormones during the clubroot disease of Brassicaceae. Plant Signal Behav 9, e28593

    Article  PubMed Central  CAS  Google Scholar 

  • McSpadden Gardener BB (2004) Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94:1252–1258

    Article  CAS  PubMed  Google Scholar 

  • Moissl-Eichinger C, Auerbach AK, Probst AJ, Mahnert A, Tom L, Piceno Y, Andersen GL, Venkateswaran K, Rettberg P, Barczyk S, Pukall R, Berg G (2015) Quo vadis? Microbial profiling revealed strong effects of cleanroom maintenance and routes of contamination in indoor environments. Sci Rep 5:9156

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S (2012) Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52:522–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg G (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakajima N, Chihara S, Koyama Y (1972) A new antibiotic, gatavalin. I. Isolation and characterization. J Antibiot 25:243–247

    Article  CAS  PubMed  Google Scholar 

  • Niu B, Vater J, Rueckert C, Blom J, Lehmann M, Ru JJ, Chen XH, Wang Q, Borriss R (2013) Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiol 13:137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Pettersson B, Rippere KE, Yousten AA, Priest FG (1999) Transfer of Bacillus lentimorbus and Bacillus popilliae to the genus Paenibacillus with emended descriptions of Paenibacillus lentimorbus comb. nov. and Paenibacillus popilliae comb. nov. Int J Syst Bacteriol 49:531–540

    Article  PubMed  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Pichard B, Larue JP, Thouvenot D (1995) Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol Lett 133:215–218

    Article  CAS  PubMed  Google Scholar 

  • Raza W, Yang W, Shen QR (2008) Paenibacillus polymyxa: antibiotics, hydrolytic enzymes and hazard assessment. J Plant Pathol 90:419–430

    CAS  Google Scholar 

  • Roh SW, Abell GC, Kim KH, Nam YD, Bae JW (2010) Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends Biotechnol 28:291–299

    Article  CAS  PubMed  Google Scholar 

  • Rybakova D, Schmuck M, Berg G (2015) Kill or cure? The interaction between endophytic Paenibacillus and Serratia spp. and the host plant is shaped by the environment; submitted

  • Sakiyama CC, Paula EM, Pereira PC, Borges AC, Silva DO (2001) Characterization of pectin lyase produced by an endophytic strain isolated from coffee cherries. Lett Appl Microbiol 33:117–121

    Article  CAS  PubMed  Google Scholar 

  • Scherling C, Ulrich K, Ewald D, Weckwerth W (2009) A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro-grown poplar plants revealed by metabolomics. Mol Plant Microbe Interact 22:1032–1037

    Article  CAS  PubMed  Google Scholar 

  • Schmid F, Moser G, Müller H, Berg G (2011) Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents. Appl Environ Microbiol 77:2188–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoina C, Stringlis IA, Pantelides IS, Tjamos SE, Paplomatas EJ (2011) Evaluation of application methods and biocontrol efficacy of Paenibacillus alvei strain K-165, against the cotton black root rot pathogen Thielaviopsis basicola. Biol Control 58:68–73

    Article  Google Scholar 

  • Shishido M, Loeb BM, Chanway CP (1995) External and internal root colonization of lodgepole pine seedlings by two growth-promoting Bacillus strains originated from different root microsites. Can J Microbiol 41:707–713

    Article  CAS  Google Scholar 

  • Shishido M, Massicotte HB, Chanway CP (1996) Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann Bot 77:433–442

    Article  Google Scholar 

  • Shoji J, Hinoo H, Wakisaka Y, Koizumi K, Mayama M, Matsuura S (1977a) Isolation of two new polymyxin group antibiotics. (Studies on antibiotics from the genus Bacillus. X). J Antibiot 30:1029–1034

    Article  CAS  PubMed  Google Scholar 

  • Shoji J, Kato T, Hinoo H (1977b) The structure of polymyxin S. (Studies on antibiotics from the genus Bacillus. XXI). J Antibiot (Tokyo) 30:1035–1041

    Article  CAS  Google Scholar 

  • Shoji J, Kato T, Hinoo H (1977c) The structure of polymyxin T1. (Studies on antibiotics from the genus Bacillus. XXII). J Antibiot 30:1042–1048

    Article  CAS  PubMed  Google Scholar 

  • Smith EF (1911) Bacteria in relation to plant diseases. Carnegie Institute, Washington, USA

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism–plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Stansly PG, Schlosser ME (1947) Studies on polymyxin: isolation and identification of Bacillus polymyxa and differentiation of polymyxin from certain known antibiotics. J Bacteriol 54:549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S (2015) Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance. Front Microbiol 6:387

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Nevo E (2011) Plant root associated biofilms. In: Maheshwari DK (ed) Bacteria in 3 agrobiology. Plant nutrient management. Springer Verlag, Berlin 3:285–300

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Paalme V, Lagercrantz U, Nevo E (2009) Detection and quantification of Paenibacillus polymyxa in the rhizosphere of wild barley (Hordeum spontaneum) with real-time PCR. J Appl Microbiol 107:736–745

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Paalme V, Pavlicek T, Bergquist J, Vangala A, Danilas T, Nevo E (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS One 6, e17968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9, e96086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tindall BJ (2000) What is the type species of the genus Paenibacillus? Request for an opinion. Int J Syst Evol Microbiol 50:939–940

    Article  PubMed  Google Scholar 

  • Tjamos SE, Flemetakis E, Paplomatas EJ, Katinakis P (2005) Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Mol Plant Microbe Interact 18:555–561

    Article  CAS  PubMed  Google Scholar 

  • Trüper HG (2005) The type species of the genus Paenibacillus Ash et al. 1994 is Paenibacillus polymyxa. Opinion 77. Int J Syst Evol Microbiol 55:17

    Article  Google Scholar 

  • Tupinambá G, Da Silva AJR, Alviano CS, Souto‐Padron TCBS, Seldin L, Alviano DS (2008) Antimicrobial activity of Paenibacillus polymyxa SCE2 against some mycotoxin‐producing fungi. J Appl Microbiol 105:1044–1053

    Article  PubMed  CAS  Google Scholar 

  • Ulrich K, Stauber, Ewald D (2008a) Paenibacillus—a predominant endophytic bacterium colonising tissue cultures of woody plants. Plant Cell Tissue Organ Cult 93:347–351

    Article  Google Scholar 

  • Ulrich K, Ulrich A, Ewald D (2008b) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63:169–180

    Article  CAS  PubMed  Google Scholar 

  • Van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Kristufek V, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci U S A 109:1159–1164

    Article  PubMed  PubMed Central  Google Scholar 

  • Verginer M, Leitner E, Berg G (2010) Production of volatile metabolites by grape-associated microorganisms. J Agric Food Chem 58:8344–8350

    Article  CAS  PubMed  Google Scholar 

  • Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Wilkinson S, Lowe LA (1966) Structures of the polymyxins A and the question of identity with the polymyxins M. Nature 212:311

    Article  CAS  PubMed  Google Scholar 

  • Woolhouse M, Farrar J (2014) Policy: an intergovernmental panel on antimicrobial resistance. Nature 509:555–557

    Article  PubMed  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida CR12-2 that overproduce indoleacetic acid. Curr Microbiol 32:67–71

    Article  CAS  Google Scholar 

  • Xie JB, Du Z, Bai L, Tian C, Zhang Y, Xie JY, Wang T, Liu X, Chen X, Cheng Q, Chen S, Li J (2014) Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. PLoS Genet 10, e1004231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao LJ, Yang XN, Li XY, Mu W, Liu F (2011) Antifungal, insecticidal and herbicidal properties of volatile components from Paenibacillus polymyxa strain BMP-11. Agric Sci China 10:728–736

    Article  CAS  Google Scholar 

  • Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L (2015) High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio 6:e02288–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Timothy Mark (Graz) for English revision and discussion. This work was supported by three grants to GB, one from the Austrian Science Fund (FWF-DACH Project I882), another one affiliated to ACIB, the Austrian Centre of Industrial Biotechnology (supported by the Federal Ministry of Economy, Family and Youth (BMWFJ), the Federal Ministry of Traffic, Innovation and Technology (bmvit), the Styrian Business Promotion Agency SFG, the Standortagentur Tirol and ZIT—Technology Agency of the City of Vienna through the COMET-Funding Program managed by the Austrian Research Promotion Agency FFG) and the 3rd is an EU-funded project (BIOCOMES, No. 612713).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Berg.

Additional information

Responsible Editor: Andrea Campisano.

Plant and Soil special issue “Soil, Plants and Endophytes” edited by Stéphane Compant, Kari Saikkonen, Birgit Mitter, Andrea Campisano, and Jesús Mercado-Blanco

Daria Rybakova and Tomislav Cernava contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 352 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybakova, D., Cernava, T., Köberl, M. et al. Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus . Plant Soil 405, 125–140 (2016). https://doi.org/10.1007/s11104-015-2526-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2526-1

Keywords

Navigation