Skip to main content

Advertisement

Log in

Effects of forest expansion on mountain grassland: changes within soil organic carbon fractions

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Grassland abandonment followed by forest succession is the dominant land-use change in the European Alps. We studied the impact of current forest expansion on mountain grassland on changes in physical soil organic carbon (SOC) fractions along a land-use and management gradient, focusing on changes in aggregate stability and particulate organic matter (POM).

Methods

Four successional stages were investigated: managed grassland, two transitional phases in which grassland abandonment led to colonization by Picea abies (L.) Karst., and old mixed forest dominated by Fagus sylvatica L. and P. abies. Soil samples collected from the mineral soil (0–5 cm, 5–10 cm, 10–20 cm) were fractionated following two procedures: 1) aggregate size fractionation, separating aggregates based on their dimension, and 2) size-density fractionation, separating stable aggregates from non-occluded POM.

Results

The dimension of aggregates assessed by aggregate size fractionation tended to increase, whereas SOC allocation to stable aggregates assessed by size-density fractionation decreased following conversion of grassland to forest (e.g. from 81 to 59 % in the 0–5 cm layer). The amount of SOC stored in POM increased by 3.8 Mg ha−1 in the integrated 0–20 cm layer from managed grassland to old forest.

Conclusions

The combination of two physical SOC fractionation procedures revealed that natural forest succession on abandoned grasslands led to a decline in physical SOC stability in the mineral soil, suggesting that SOC can become more susceptible to management and environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberti G, Peressotti A, Piussi P, Zerbi G (2008) Forest ecosystem carbon accumulation during a secondary succession in the Eastern Prealps of Italy. Forestry 81:1–11. doi:10.1093/forestry/cpm026

    Article  Google Scholar 

  • Aoyama M, Angers DA, N’Dayegamiye A, Bissonnette N (2000) Metabolism of 13C-labeled glucose in aggregates from soils with manure application. Soil Biol Biochem 32:295–300. doi:10.1016/S0038-0717(99)00152-2

    Article  CAS  Google Scholar 

  • Baisden WT, Amundson R, Cook AC, Brenner DL (2002) Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Glob Biogeochem Cycles 16:1117. doi:10.1029/2001gb001822

    Google Scholar 

  • Brodie CR, Leng MJ, Casford JSL, Kendrick CP, Lloyd JM, Yongqiang Z, Bird MI (2011) Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chem Geol 282:67–83. doi:10.1016/j.chemgeo.2011.01.007

    Article  CAS  Google Scholar 

  • Budge K, Leifeld J, Hiltbrunner E, Fuhrer J (2011) Alpine grassland soils contain large proportion of labile carbon but indicate long turnover times. Biogeosciences 8:1911–1923

    Article  CAS  Google Scholar 

  • Cambardella CA, Elliott ET (1992) Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56:777–783. doi:10.2136/sssaj1992.03615995005600030017x

    Article  Google Scholar 

  • Cambardella C, Elliott E (1993) Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci Soc Am J 57:1071–1076

    Article  CAS  Google Scholar 

  • Cerli C, Celi L, Kalbitz K, Guggenberger G, Kaiser K (2012) Separation of light and heavy organic matter fractions in soil—testing for proper density cut-off and dispersion level. Geoderma 170:403–416

    Article  CAS  Google Scholar 

  • Christensen BT (2001) Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur J Soil Sci 52:345–353. doi:10.1046/j.1365-2389.2001.00417.x

    Article  CAS  Google Scholar 

  • Clark JD, Plante AF, Johnson AH (2012) Soil organic matter quality in chronosequences of secondary northern hardwood forests in Western New England. Soil Sci Soc Am J 76:684–693. doi:10.2136/sssaj2010.0425

    Article  CAS  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995. doi:10.1111/gcb.12113

    Article  PubMed  Google Scholar 

  • Creamer CA, Filley TR, Boutton TW, Oleynik S, Kantola IB (2011) Controls on soil carbon accumulation during woody plant encroachment: evidence from physical fractionation, soil respiration, and δ13C of respired CO2. Soil Biol Biochem 43:1678–1687. doi:10.1016/j.soilbio.2011.04.013

    Article  CAS  Google Scholar 

  • Currie WS (1999) The responsive C and N biogeochemistry of the temperate forest floor. Trends Ecol Evol 14:316–320. doi:10.1016/S0169-5347(99)01645-6

    Article  PubMed  Google Scholar 

  • Dalal RC, Harms BP, Krull E, Wang WJ, Mathers NJ (2005) Total soil organic matter and its labile pools following mulga (Acacia aneura) clearing for pasture development and cropping. 2. Total and labile nitrogen. Soil Research 43:179–187. doi:10.1071/SR04076

    Article  CAS  Google Scholar 

  • Dimoyiannis D (2009) Seasonal soil aggregate stability variation in relation to rainfall and temperature under Mediterranean conditions. Earth Surf Process Landf 34:860–866. doi:10.1002/esp.1785

    Article  Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796. doi:10.1111/j.1365-2486.2012.02665.x

    Article  Google Scholar 

  • Elliott E (1986) Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci Soc Am J 50:627–633

    Article  Google Scholar 

  • Genenger M, Jaeggi M, Siegwolf R, Chalot M, Frossard E, Brunner I (2003) Rapid 15N uptake and metabolism in fine roots of Norway spruce. Trees 17:144–152. doi:10.1007/s00468-002-0215-1

    CAS  Google Scholar 

  • Giraudoux P (2013) pgirmess: Data analysis in ecology. R package version 1.5.7. http://CRAN.R-project.org/package=pgirmess

  • Gregorich E, Beare M, McKim U, Skjemstad J (2006) Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci Soc Am J 70:975–985

    Article  CAS  Google Scholar 

  • Guidi C, Vesterdal L, Gianelle D, Rodeghiero M (2014) Changes in soil organic carbon and nitrogen following forest expansion on grassland in the Southern Alps. For Ecol Manag 328:103–116. doi:10.1016/j.foreco.2014.05.025

    Article  Google Scholar 

  • Guo L, Wang M, Gifford R (2007) The change of soil carbon stocks and fine root dynamics after land use change from a native pasture to a pine plantation. Plant Soil 299:251–262. doi:10.1007/s11104-007-9381-7

    Article  CAS  Google Scholar 

  • Guo LB, Cowie AL, Montagu KD, Gifford RM (2008) Carbon and nitrogen stocks in a native pasture and an adjacent 16-year-old Pinus radiata D. Don. plantation in Australia. Agric Ecosyst Environ 124:205–218. doi:10.1016/j.agee.2007.09.013

    Article  CAS  Google Scholar 

  • Haugo RD, Bakker JD, Halpern CB (2013) Role of biotic interactions in regulating conifer invasion of grasslands. For Ecol Manag 289:175–182. doi:10.1016/j.foreco.2012.10.019

    Article  Google Scholar 

  • Hiltbrunner D, Zimmermann S, Hagedorn F (2013) Afforestation with Norway spruce on a subalpine pasture alters carbon dynamics but only moderately affects soil carbon storage. Biogeochemistry 115:251–266. doi:10.1007/s10533-013-9832-6

    Article  CAS  Google Scholar 

  • IUSS (2007) World reference base for soil resources 2006, first update 2007. World soil resources report no. 103. FAO, Rome

    Google Scholar 

  • Jackson RB, Mooney H, Schulze E-D (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci 94:7362–7366

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30:905–916. doi:10.1016/S0038-0717(97)00207-1

    Article  CAS  Google Scholar 

  • John B, Yamashita T, Ludwig B, Flessa H (2005) Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 128:63–79. doi:10.1016/j.geoderma.2004.12.013

    Article  CAS  Google Scholar 

  • Kemper W, Rosenau R (1986) Aggregate stability and size distribution. Methods of soil analysis part 1 physical and mineralogical methods: 425–442

  • Knorr M, Frey S, Curtis P (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257

    Article  Google Scholar 

  • Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B, von Lützow M (2008) An integrative approach of organic matter stabilization in temperate soils: Linking chemistry, physics, and biology. J Plant Nutr Soil Sci 171:5–13. doi:10.1002/jpln.200700215

    Article  CAS  Google Scholar 

  • Leifeld J, Fuhrer J (2009) Long-term management effects on soil organic matter in two cold, high-elevation grasslands: clues from fractionation and radiocarbon dating. Eur J Soil Sci 60:230–239. doi:10.1111/j.1365-2389.2008.01111.x

    Article  CAS  Google Scholar 

  • Liao JD, Boutton TW, Jastrow JD (2006) Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland. Soil Biol Biochem 38:3184–3196. doi:10.1016/j.soilbio.2006.04.003

    Article  CAS  Google Scholar 

  • Macdonald CA, Thomas N, Robinson L, Tate KR, Ross DJ, Dando J, Singh BK (2009) Physiological, biochemical and molecular responses of the soil microbial community after afforestation of pastures with Pinus radiata. Soil Biol Biochem 41:1642–1651

    Article  CAS  Google Scholar 

  • Magid J, Gorissen A, Giller K (1996) In search of the elusive “active” fraction of soil organic matter: three size-density fractionation methods for tracing the fate of homogeneously 14C-labelled plant materials. Soil Biol Biochem 28:89–99

    Article  CAS  Google Scholar 

  • Magid J, Cadisch G, Giller K (2002) Short and medium term plant litter decomposition in a tropical Ultisol elucidated by physical fractionation in a dual 13C and 14C isotope study. Soil Biol Biochem 34:1273–1281

    Article  CAS  Google Scholar 

  • Magid J, De Nowina K, Lindedam J, Andren O (2010) Organic matter in size-density fractions after 16–50 years of grass ley, cereal cropping and organic amendments. Eur J Soil Sci 61:539–550

    Article  CAS  Google Scholar 

  • Meyer S, Leifeld J, Bahn M, Fuhrer J (2012) Land-use change in subalpine grassland soils: effect on particulate organic carbon fractions and aggregation. J Plant Nutr Soil Sci 175:401–409

    Article  CAS  Google Scholar 

  • Moni C, Derrien D, Hatton PJ, Zeller B, Kleber M (2012) Density fractions versus size separates: does physical fractionation isolate functional soil compartments? Biogeosciences 9:5181–5197. doi:10.5194/bg-9-5181-2012

    Article  CAS  Google Scholar 

  • Montane F, Rovira P, Casals P (2007) Shrub encroachment into mesic mountain grasslands in the Iberian peninsula: effects of plant quality and temperature on soil C and N stocks. Glob Biogeochem Cycles 21. doi: 10.1029/2006gb002853

  • Nosetto MD, Jobbágy EG, Paruelo JM (2005) Land-use change and water losses: the case of grassland afforestation across a soil textural gradient in central Argentina. Glob Chang Biol 11:1101–1117. doi:10.1111/j.1365-2486.2005.00975.x

    Article  Google Scholar 

  • Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337. doi:10.1007/bf02205590

    Article  CAS  Google Scholar 

  • Poeplau C, Don A (2013) Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189–201. doi:10.1016/j.geoderma.2012.08.003

    Article  CAS  Google Scholar 

  • R Development Core Team (2013). R Foundation for statistical computing, Vienna, Austria. URL http://www.R-project.org/

  • Risch AC, Jurgensen MF, Page-Dumroese DS, Wildi O, Schutz M (2008) Long-term development of above- and below-ground carbon stocks following land-use change in subalpine ecosystems of the Swiss National Park. Can J For Res Revue Canadienne De Recherche Forestiere 38:1590–1602. doi:10.1139/x08-014

    Article  CAS  Google Scholar 

  • Rodeghiero M, Heinemeyer A, Schrumpf M, Bellamy P (2009) Determination of soil carbon stocks and changes. In: Kutsch W, Bahn M, Heinemeyer A (eds) Soil carbon flux measurements-an integrated methodology. Cambridge University Press, Cambridge

    Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  PubMed  CAS  Google Scholar 

  • Schrumpf M, Schulze ED, Kaiser K, Schumacher J (2011) How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences 8:1193–1212. doi:10.5194/bg-8-1193-2011

    Article  CAS  Google Scholar 

  • Schrumpf M, Kaiser K, Guggenberger G, Persson T, Kögel-Knabner I, Schulze ED (2013) Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10:1675–1691. doi:10.5194/bg-10-1675-2013

    Article  CAS  Google Scholar 

  • Silver W, Miya R (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419. doi:10.1007/s004420100740

    Google Scholar 

  • Sitzia T (2009) Ecologia e gestione dei boschi di neoformazione nel paesaggio trentino. Provincia Autonoma di Trento, Servizio Foreste e Fauna, Trento

    Google Scholar 

  • Six J, Elliott ET, Paustian K, Doran JW (1998) Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am J 62:1367–1377

    Article  CAS  Google Scholar 

  • Six J, Callewaert P, Lenders S, De Gryze S, Morris SJ, Gregorich EG, Paul EA, Paustian K (2002) Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Sci Soc Am J 66:1981–1987

    Article  CAS  Google Scholar 

  • Skjemstad JO, Baldock JA (2006) Chapter 21, Total and Organic Carbon. Soil Sampling and methods of analysis, Edited by MR Carter and EG Gregorich. Second Edition edn. Canadian Society of Soil Science

  • Smith DL, Johnson L (2004) Vegetation-mediated changes in microclimate reduce soil respiration as woodlands expand into grasslands. Ecology 85:3348–3361. doi:10.1890/03-0576

    Article  Google Scholar 

  • Solly E, Schöning I, Boch S, Müller J, Socher SA, Trumbore SE, Schrumpf M (2013) Mean age of carbon in fine roots from temperate forests and grasslands with different management. Biogeosciences 10:4833–4843. doi:10.5194/bg-10-4833-2013

    Article  Google Scholar 

  • Tasser E, Tappeiner U (2002) Impact of land use changes on mountain vegetation. Appl Veg Sci 5:173–184. doi:10.1111/j.1654-109X.2002.tb00547.x

    Article  Google Scholar 

  • Thuille A, Schulze ED (2006) Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Glob Chang Biol 12:325–342. doi:10.1111/j.1365-2486.2005.01078.x

    Article  Google Scholar 

  • Thuille A, Buchmann N, Schulze ED (2000) Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy. Tree Physiol 20:849–857

    Article  PubMed  Google Scholar 

  • Tisdall J (1991) Fungal hyphae and structural stability of soil. Soil Res 29:729–743. doi:10.1071/SR9910729

    Article  Google Scholar 

  • Ugawa S, Miura S, Iwamoto K, Kaneko S, Fukuda K (2010) Vertical patterns of fine root biomass, morphology and nitrogen concentration in a subalpine fir-wave forest. Plant Soil 335:469–478. doi:10.1007/s11104-010-0434-y

    Article  CAS  Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207

    Article  CAS  Google Scholar 

  • Webster R (2001) Statistics to support soil research and their presentation. Eur J Soil Sci 52:331–340

    Article  CAS  Google Scholar 

  • Zeller V, Bahn M, Aichner M, Tappeiner U (2000) Impact of land-use change on nitrogen mineralization in subalpine grasslands in the Southern Alps. Biol Fertil Soil 31:441–448. doi:10.1007/s003740000200

    Article  CAS  Google Scholar 

  • Zimmermann M, Leifeld J, Schmidt MWI, Smith P, Fuhrer J (2007) Measured soil organic matter fractions can be related to pools in the RothC model. Eur J Soil Sci 58:658–667. doi:10.1111/j.1365-2389.2006.00855.x

    Article  Google Scholar 

  • Zimmermann P, Tasser E, Leitinger G, Tappeiner U (2010) Effects of land-use and land-cover pattern on landscape-scale biodiversity in the European Alps. Agric Ecosyst Environ 139:13–22. doi:10.1016/j.agee.2010.06.010

    Article  Google Scholar 

Download references

Acknowledgments

We thank Matteo Girardi, Preben Frederiksen, Xhevat Haliti, Mads Madsen Krag for their support in laboratory work, Jonas Duus Stevens Lekfeldt and Sander Bruun for their helpful collaboration. Moreover we would like to thank Chiara Cerli, Maria Francesca Cotrufo and Michael Bahn for useful discussions on soil fractionation procedures. We also thank Teresa Gómez de la Bárcena for her comments on a manuscript draft and two anonymous reviewers for their valuable contribution to improve the manuscript. The project was financed by Fondazione Edmund Mach through a grant (Project Code AM08) awarded to C.G. and laboratory work was also supported by the University of Copenhagen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Guidi.

Additional information

Responsible Editor: Ingrid Koegel-Knabner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guidi, C., Magid, J., Rodeghiero, M. et al. Effects of forest expansion on mountain grassland: changes within soil organic carbon fractions. Plant Soil 385, 373–387 (2014). https://doi.org/10.1007/s11104-014-2315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2315-2

Keywords

Navigation