Skip to main content
Log in

Surface peat structure and chemistry in a tropical peat swamp forest

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Tropical peat swamp forests (PSF) are great stores of terrestrial carbon and host unique biodiversity. Despite their importance for carbon accounting, the peat characteristics are sparsely studied, and the effect of microtopography on peat properties has not been reported before.

Methods

We compared PSF peat soil characteristics down to 70 cm under differing microtopographical conditions and hydrology.

Results

Long-term water table level data combined with the data from peat structure and chemistry analyses showed differences in most of the measured properties between hummocks and hollows. Decomposition degree was lowest at hummock and hollow surfaces while bulk density and C content increased towards deeper peat. Ash, P, K, Ca and Mg had highest concentrations on hummock surfaces with declining trend downwards, whereas N had no clear concentration pattern along the elevation gradient.

Conclusions

The microtopographical features may not only differ in regards to the water table-induced oxygen conditions but also due to differences in nutrient dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PSF:

Peat swamp forest

C/N ratio:

Carbon nitrogen ratio

References

  • Anderson J (1983) The tropical peat swamps of western Malesia. In: Gore A (ed) Mires: swamp, bog, fen and moor. B. Regional studies Elsevier, Amsterdam, pp 181–199

    Google Scholar 

  • Anshari GZ, Afifudin M, Nuriman M, Gusmayanti E, Arianie L, Susana R, Nusantara RW, Sugardjito J, Rafiastanto A (2010) Drainage and land use impacts on changes in selected peat properties and peat degradation in West Kalimantan Province, Indonesia. Biogeosciences 7:3403–3419

    Article  CAS  Google Scholar 

  • Bergner K, Bohlin E, Albano Å (1990) Vad innehåller torv? Centrum för Torvforskning Umeå, Sweden, 30 p

    Google Scholar 

  • Brady M (1997) Effects of vegetation changes onorganic matter dynamics in three coastal peat deposits in Sumatra, Indonesia. In: Rieley JO, Page SE (eds.). Biodiversity and sustainability of tropical peatlands. Samara Publishing, Cardigan, UK. pp. 113–134

  • Dinsmore KJ, Skiba UM, Billett MF, Rees RM (2009) Effect of water table on greenhouse gas emissions from peatland mesocosms. Plant Soil 318:229–242

    Article  CAS  Google Scholar 

  • Dommain R, Couwenberg J, Joosten H (2010) Hydrological self-regulation of domed peatlands in south-east Asia and consequences for conservation and restoration. Mires and Peat 6:1–17

    Google Scholar 

  • Finér L, Laine J (1998) Root dynamics at drained peatland sites of different fertility in southern Finland. Plant Soil 201:27–36

    Article  Google Scholar 

  • Hergoualc'h K, Verchot LV (2011) Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review. Global Biogeochem Cycles 25, GB2001

    Article  Google Scholar 

  • Hirano T, Jauhiainen J, Inoue T, Takahashi H (2009) Controls on the carbon balance of tropical peatlands. Ecosystems 12:873–887

    Article  CAS  Google Scholar 

  • Hooijer A, Page S, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G (2012) Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9:1053–1071

    Article  CAS  Google Scholar 

  • Jaenicke J, Rieley JO, Mott C, Kimman P, Siegert F (2008) Determination of the amount of carbon stored in Indonesian peatlands. Geoderma 147:151–158

    Article  CAS  Google Scholar 

  • Jaya A (2007) Ecological planning of tropical peatland for carbon and water conservation. PhD thesis, University of Nottingham. 178 p

  • Kool DM, Buurman P, Hoekman DH (2006) Oxidation and compaction of a collapsed peat dome in Central Kalimantan. Geoderma 137:217–225

    Article  CAS  Google Scholar 

  • Kronseder K, Ballhorn U, Boehm V, Siegert F (2012) Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data. International Journal of Applied Earth Observation and Geoinformation 18:37–48

    Article  Google Scholar 

  • Kurnain A, Notohadikusumo T, Radjagukguk B, Hastuti S (2002) The state of decomposition of tropical peat soil under cultivated and fire damaged peatland. In: Rieley JO, Page SE, Setiadi B (eds.) Peatlands for People, Natural Resources Function and Sustainable Management. Proceedings of the International Symposium on Tropical Peatland, 22–23 August 2001, Jakarta. Indonesia. BPPT and Indonesian Peat Association, Jakarta, pp 168–178

  • Kurnain A, Notohadikusumo T, Radjagukguk B, Hastuti S (2001) Peat soil properties related to degree of decomposition under different land use systems. International Peat Journal 11:67–77

    CAS  Google Scholar 

  • Langner A, Siegert F (2009) Spatiotemporal fire occurrence in Borneo over a period of 10 years. Global Change Biol 15:48–62

    Article  Google Scholar 

  • MacKinnon K, Hatta G, Halim H, Mangalik A (1996) The Ecology of Kalimantan, Indonesian Borneo. The Ecology of Indonesia Series, Volume III. Periplus Editions, Singapore. 802 p

  • Melling L, Uyo L, Hatano R, Osaki M (2006) Soils of Loagan Bunut National Park, Sarawak, Malaysia. Final Report. Peat Swamp Forests Project, UNDP/GEF. MAL/99/G31

  • Miettinen J, Liew SC (2010) Status of Peatland Degradation and Development in Sumatra and Kalimantan. Ambio 39:394–401

    Article  PubMed Central  PubMed  Google Scholar 

  • Morley R (2000) Origin and Evolution of Tropical Rain Forests. Wiley, UK, 362 p

    Google Scholar 

  • Neuzil S (1997) Onset and Rate of Peat and Carbon Accumulation in Four Domed Ombrogenous Peat Deposits, Indonesia. In: Rieley JO, Page SE (eds.). Biodiversity and sustainability of tropical peatlands. Samara Publishing, Cardigan, UK. pp. 55–72

  • Nungesser MK (2003) Modelling microtopography in boreal peatlands: hummocks and hollows. Ecol Model 165:175–207

    Article  Google Scholar 

  • Ohlson M (1999) Differentiation in adaptive traits between neighbouring bog and mineral soil populations of Scots pine Pinus sylvestris. Ecography 22:178–182

    Article  Google Scholar 

  • Page S, Rieley J, Shotyk O, Weiss D (1999) Interdependence of peat and vegetation in a tropical peat swamp forest. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 354:1885–1897

    Article  CAS  Google Scholar 

  • Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Global Change Biol 17:798–818

    Article  Google Scholar 

  • Page SE, Wüst R, Weiss D, Rieley JO, Shotyk W, Limin S (2004) A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J Quat Sci 19(7):625–635

    Article  Google Scholar 

  • Pitkänen A, Turunen J, Simola H (2011) Comparison of different types of peat corers in volumetric sampling. Suo 62(2): 51–57

  • Rydin H, Jeglum J (2006) The Biology of Peatlands. Oxford University Press, UK, 343 p

    Book  Google Scholar 

  • Sajarwan A, Notohadiprawiro T, Radjagukguk B, Hastuti S (2002) Diversity of tropical peat characteristics in intact peatland forest, under the influence of forest type, peat thickness, and the position of the peat deposit. In: Rieley JO, Page SE, Setiadi B (eds.). Peatlands for People, Natural Resources Function and Sustainable Management. Proceedings of the International Symposium on Tropical Peatland, 22–23 August 2001, Jakarta. Indonesia. BPPT and Indonesian Peat Association, Jakarta, pp 119–124

  • Shepherd P, Rieley JO, Page SE (1997) The Relationship Between Forest Vegetation and Peat Characteristics in the Upper Catchment of Sungai Sabangau, Central Kalimantan. In: Rieley JO, Page SE (eds.). Biodiversity and sustainability of tropical peatlands. Samara Publishing, Cardigan, UK. pp. 191–210

  • Shimada S, Takahashi H, Haraguchi A, Kaneko M (2001) The carbon content characteristics of tropical peats in central Kalimantan, Indonesia; estimating their spatial variability in density. Biogeochemistry (Dordrecht) 53:249–267

    Article  CAS  Google Scholar 

  • Shimamura T, Momose K (2005) Organic matter dynamics control plant species coexistence in a tropical peat swamp forest. Proceedings Biological sciences/The Royal Society 272:1503–1510

    Article  PubMed Central  PubMed  Google Scholar 

  • Shimamura T, Momose K, Kobayashi S (2006) A comparison of sites suitable for the seedling establishment of two co-occurring species, Swintonia glauca and Stemonurus scorpioides, in a tropical peat swamp forest. Ecol Res 21:759–767

    Article  Google Scholar 

  • Soil Survey Staff (1999) Soil Taxonomy - a basic system of soil classification for making and interpreting soil surveys. United States Agricultural Department, Natural Resources Conservation Service Agriculture Handbook No. 436. Government Printing Office, Washington USA. 871 p

  • Stoneman R (1997) Ecolological Studies in the Badas Peat Swamp, Brunei Darussalam. In: Rieley JO, Page SE (eds) Biodiversity and sustainability of tropical peatlands. Samara Publishing Cardigan, UK, pp 221–230

    Google Scholar 

  • Sulistiyanto Y (2004) Nutrient dynamics in different sub-types of peat swamp forest in central Kalimantan, Indonesia. PhD thesis, University of Nottingham, UK. 388 p

  • Takahashi H, Shimada S, Ibie B, Usup A, Yudha LS (2002) Annual changes of water balance and a drought index in a tropical peat swamp forest of Central Kalimantan, Indonesia. In: Rieley JO, Page SE, Setiadi B (eds.) Peatlands for People, Natural Resources Function and Sustainable Management. Proceedings of the International Symposium on Tropical Peatland, 22–23 August 2001, Jakarta. Indonesia. BPPT and Indonesian Peat Association, Jakarta, pp 63–67

  • Takakai F, Morishita T, Hashidoko Y, Darung U, Kuramochi K, Dohong S, Limin SH, Hatano R (2006) Effects of agricultural land-use change and forest fire on N2O emission from tropical peatlands, Central Kalimantan, Indonesia. Soil Sci Plant Nutr 52:662–674

    Article  CAS  Google Scholar 

  • Tolonen K, Ijäs L (1982) Comparison of two peat samplers used in estimating the dry peat yield in field inventories. Suo 33:33–42

    Google Scholar 

  • von Post L (1922) Sveriges Geologiska Undersöknings torvinventering och några av dess hittills vunna resultat. Svenska Mosskulturföreningens Tidsskrift 1:1–27

  • Wahid O, Paramananthan S, Mohd H, Nordiana A, Kushairi A (2013) Malaysian unified peat classification technique. Malaysian Palm Oil Board, MPOB Information Series, 529

    Google Scholar 

  • Waldes N, Page SE (2002) Forest structure and tree diversity of a peat swamp forest in Central Kalimantan, Indonesia. In: Rieley JO, Page SE, Setiadi B (eds.) Peatlands for People, Natural Resources Function and Sustainable Management. Proceedings of the International Symposium on Tropical Peatland, 22–23 August 2001, Jakarta. Indonesia. BPPT and Indonesian Peat Association, Jakarta, pp 16–22

  • Warren MW, Kauffman JB, Murdiyarso D, Anshari G, Hergoualc'h K, Kurnianto S, Purbopuspito J, Gusmayanti E, Afifudin M, Rahajoe J, Alhamd L, Limin S, Iswandi A (2012) A cost-efficient method to assess carbon stocks in tropical peat soil. Biogeosciences 9:4477–4485

    Article  CAS  Google Scholar 

  • Weiss D, Shotyk W, Rieley J, Page S, Gloor M, Reese S, Martinez-Cortizas A (2002) The geochemistry of major and selected trace elements in a forested peat bog, Kalimantan, SE Asia, and its implications for past atmospheric dust deposition. Geochim Cosmochim Acta 66:2307–2323

    Article  CAS  Google Scholar 

  • Wu J, Roulet NT, Moore TR, Lafleur P, Humphreys E (2011) Dealing with microtopography of an ombrotrophic bog for simulating ecosystem-level CO2 exchanges. Ecol Model 222:1038–1047

    Article  CAS  Google Scholar 

  • Wüst RAJ, Bustin RM, Lavkulich LM (2003) New classification systems for tropical organic-rich deposits based on studies of the Tasek Bera Basin, Malaysia. Catena 53:133–163

    Article  Google Scholar 

  • Yonebayashi K, Okazaki M, Kaneko N, Funakawa S (1997) Tropical Peatland Soil Ecosystems in Southeast Asia: Their Characterisation and Sustainable Utilisation. In: Rieley JO, Page SE (eds) Biodiversity and sustainability of tropical peatlands. Samara Publishing, Cardigan, UK, pp 103–111

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Hidenori Takahashi for kindly providing us the water level data. We would also like to thank Iida Kämäri, CIMTROP staff and our funding body the Academy of Finland by KEYTROP and RETROPEAT (no. 253933) projects. Three reviewers and the subject editor are acknowledged for their thorough and constructive remarks on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maija Lampela.

Additional information

Responsible Editor: Tim Moore.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lampela, M., Jauhiainen, J. & Vasander, H. Surface peat structure and chemistry in a tropical peat swamp forest. Plant Soil 382, 329–347 (2014). https://doi.org/10.1007/s11104-014-2187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2187-5

Keywords

Navigation