Skip to main content

Advertisement

Log in

Litter dynamics and fine root production in Schizolobium parahyba var. amazonicum plantations and regrowth forest in Eastern Amazon

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Forest plantations and agroforestry systems with Schizolobium parahyba var. amazonicum have greatly expanded in the Brazilian Amazon, generally as an alternative for reforesting degraded areas. To our knowledge there are no reports of above- and below-ground production in these forest systems. We quantified litter and fine root production in 6-yr old Schizolobium-based plantation forests (monospecific: MON, mixture: MIX, and agroforestry system: AFS) and in ~25-yr old regrowth forest (REG) over 8–12 months. We used litter traps and ingrowth cores to quantify litter and fine root production, respectively. Annual litter production was significantly lower in Schizolobium-based plantations (mean ± standard error, MON = 5.92 ± 0.15, MIX = 6.08 ± 0.13, AFS = 6.63 ± 0.13 Mg ha−1 year−1) than in regrowth forest (8.64 ± 0.08 Mg ha−1 year−1). Schizolobium-based plantations showed significantly higher litter stock (MON = 7.7 ± 1.0, MIX = 7.4 ± 0.1 Mg ha−1) than REG (5.9 ± 1.3 Mg ha−1). Total fine root production over an 8-month period was significantly higher in Schizolobium-based plantations (MON = 3.8 ± 0.2, MIX = 3.4 ± 0.2, AFS = 2.7 ± 0.1 Mg ha−1) than in REG (1.1 ± 0.03 Mg ha−1). Six-yr old Schizolobium-based plantations and ~25-yr old regrowth forests showed comparable rates of litter + fine root production, suggesting that young forest plantations may be an interesting alternative to restore degraded areas due to early reestablishment of organic matter cycling under the studied conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ABRAF (2010) Anuario estatistico da ABRAF 2010 ano base 2009. Associacao Brasileira de Produtores de Florestas Plantadas, Brasilia

    Google Scholar 

  • Barlow J, Gardner TA, Ferreira LV, Peres CA (2007) Litter fall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon. Forest Ecol Manag 247:91–97

    Article  Google Scholar 

  • Borchert R, Rivera G, Hagnauer W (2002) Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34(1):27–39

    Google Scholar 

  • Brown S, Lugo AE (1990) Tropical secondary forests. J Trop Ecol 6:1–32

    Article  Google Scholar 

  • Chave J, Navarrete D, Almeida S, Álvarez E, Aragão LEOC, Bonal D, Châtelet P, Silva-Espejo JE, Goret JY, von Hildebrand P, Jiménez E, Patiño S, Peñuela MC, Phillips OL, Stevenson P, Malhi Y (2010) Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7(1):43–55. doi:10.5194/bg-7-43-2010

    Article  Google Scholar 

  • Cordeiro IMC (2007) Comportamento de Schizolobium parahyba var. amazonicum (Huber ex Ducke) Barneby e Ananas comosus var. erectifolius (L. B. Smith) Coppens & Leal sob diferentes sistemas de cultivo no município de Aurora do Pará (PA). Dissertation, Universidade Federal Rural da Amazônia, Belém

  • Cravo MDS, Viégas IDJM, Brasil EC (2007) Recomendacoes de adubacao e calagem para o estado do Para. Embrapa Amazonia Oriental, Belem

    Google Scholar 

  • Cuevas E, Medina E (1986) Nutrient dynamics within Amazonian forest ecosystems I. Nutrient flux in fine litter fall and efficiency of nutrient utilization. Oecologia 68:466–472

    Article  Google Scholar 

  • Cuevas E, Lugo AE (1998) Dynamics of organic matter and nutrient return from litterfall in stands of ten tropical tree plantation species. Forest Ecol Manag 112(3):263–279

    Article  Google Scholar 

  • Cuevas E, Brown S, Lugo AE (1991) Above- and belowground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest. Plant Soil 135:257–268

    Article  Google Scholar 

  • Davidson EA, de Carvalho CJR, Figueira AM, Ishida FY, Ometto JPHB, Nardoto GB, Saba RT, Hayashi SN, Leal EC, Vieira ICG, Martinelli LA (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447 (7147):995–998. doi:http://www.nature.com/nature/journal/v447/n7147/suppinfo/nature05900_S1.html

    Google Scholar 

  • Dias JD (2008) Dinamica do amonio e nitrato em solos consorciados com plantios de parica (Schizolobium amazonicum) em Aurora do Para, Para. Thesis, Universidade Federal do Para Belem

  • Ducke A (1949) Notas sobre a flora neotropica II: as leguminosas da Amazonia brasileira. IAN Boletim Tecnico 18. Belem

  • Embrapa (1997) Manual de metodos de analise de solo, 2nd edn. EMBRAPA-CNPS, Rio de Janeiro

    Google Scholar 

  • Gazel Filho AB, Cordeiro IMCC, Alvarado JR, Santos Filho BGD (2007) Producao de biomassa em quatro procedencias de parica (Schizolobium parahyba var. amazonicum (Huber ex Ducke) Barneby no estadio de muda. Rev Brasil Bioci 5:1047–1049

    Google Scholar 

  • Higuchi N, Santos J, Ribeiro RJ, Minette L, Biot Y (1998) Biomassa da parte aerea da vegetacao da floresta tropical umida de terra-firme da Amazonia brasileira. Acta Amazonica 28(2):153–166

    Google Scholar 

  • Lamb D, Erskine PD, Parrotta JA (2005) Restoration of degraded tropical forest landscapes. Science 310(5754):1628–1632. doi:10.1126/science.1111773

    Article  PubMed  CAS  Google Scholar 

  • Lima TTS, Miranda IS, Vasconcelos SS (2010) Effects of water and nutrient availability on fine root growth in eastern Amazonian forest regrowth, Brazil. New Phytol. doi:10.1111/j.1469-8137.2010.03299.x

  • Littell RC, Henry PR, Ammerman CJ (1998) Statistical analysis of repeated measures data using SAS procedures. J Anim Sci 76:1216–1231

    PubMed  CAS  Google Scholar 

  • Lugo AE (1992) Comparison of tropical tree plantations with secondary forests of similar age. Ecol Monogr 62(1):1–41

    Article  Google Scholar 

  • Luizão FJ, Tapia-Coral S, Gallardo-Ordinola J, Silva GC, Luizão RC, Trujillo-Cabrera L, Wandelli E, Fernandes ECM (2006) Ciclos biogeoquimicos em agroflorestas da Amazonia. In: Gama-Rodrigues ACd, Barros NFd, Gama-Rodrigues EFd et al. (eds) Sistemas agroflorestais: bases cientificas para o desenvolvimento sustentavel. Embrapa Informacao Tecnologica, Brasilia, pp 87–100

  • Martius C, Höfer H, Garcia MVB, Römbke J, Hanagarth W (2004) Litter fall, litter stocks and decomposition rates in rainforest and agroforestry sites in central Amazonia. Nutr Cycl Agroecosyst 68:137–154

    Article  CAS  Google Scholar 

  • Metcalfe DB, Meir P, Aragao LEOC, Costa ACL, Braga AP, Goncalves PHL, Silva Junior JA, Almeida SS, Dawson LA, Malhi Y, Williams M (2008) The effects of water availability on root growth and morphology in an Amazon rainforest. Plant Soil 311:189–199

    Article  CAS  Google Scholar 

  • Montagnini F, Cusack D, Petit B, Kanninen M (2006) Environmental services of native tree plantations and agroforestry systems in Central America. In: Montagnini F (ed) Environmental services of agroforestry systems. Food Products Press, Binghamton, pp 51–67

    Google Scholar 

  • Nadelhoffer KJ, Raich J (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73(4):1139–1147

    Article  Google Scholar 

  • Nelson BW, Mesquita R, Pereira JLG, Souza SGAD, Batista GT, Couto LB (1999) Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecol Manag 117:149–167

    Article  Google Scholar 

  • Nepstad D, Moutinho PRS, Markewitz D (2001) The recovery of biomass, nutrient stocks, and deep soil functions in secondary forests. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, New York, pp 139–155

    Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • SAS (2004) SAS/STAT® 9.1 User’s Guide. SAS Institute Inc., Cary

  • Smith CK, Oliveira FDA, Gholz HL, Baima A (2002) Soil carbon stocks after forest conversion to tree plantations in lowland Amazonia, Brazil. Forest Ecol Manag 164:257–263

    Article  Google Scholar 

  • Smith K, Gholz HL, Oliveira FDA (1998) Litterfall and nitrogen-use efficiency of plantations and primary forest in the eastern Brazilian Amazon. Forest Ecol Manag 109:209–220

    Article  Google Scholar 

  • Sombroek W (2001) Spatial and temporal patterns of Amazon rainfall. Consequences for the planning of agricultural occupation and the protection of primary forests. R Swed Acad Sci 30(7):388–396

    CAS  Google Scholar 

  • Valverde-Barrantes OJ, Raich JW, Russell AE (2007) Fine-root mass, growth and nitrogen content for six tropical tree species. Plant Soil 290:357–370

    Article  CAS  Google Scholar 

  • Vasconcelos SS, Zarin DJ, Capanu M, Littell R, Davidson EA, Ishida FY, Santos EB, Araújo MM, Aragão DV, Rangel-Vasconcelos LGT, Oliveira FDA, McDowell WH, Carvalho CJRD (2004) Moisture and substrate availability constrain soil trace gas fluxes in an eastern Amazonian regrowth forest. Global Biogeochem Cycles 18:GB2009, doi:2010.1029/2003GB002210

  • Vitousek PM, Sanford RL, Jr. (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167

    Article  Google Scholar 

Download references

Acknowledgments

We thank Guilherme Cordeiro for his logistical support and Thiago Sozinho, Carolina Shizue, and Aline Faria, for their field and laboratory assistance. We also thank two anonymous reviewers for insightful comments that improved the manuscript. Fellowship financing was made available to Silva by Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), as this study was part of the requirements necessary for obtaining a Master’s Degree in the post-graduate Environmental Studies Program of the Universidade Federal do Para. This study was partly funded by Project Carboagro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steel Silva Vasconcelos.

Additional information

Responsible Editor: Johannes Lehmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, A.K.L., Vasconcelos, S.S., de Carvalho, C.J.R. et al. Litter dynamics and fine root production in Schizolobium parahyba var. amazonicum plantations and regrowth forest in Eastern Amazon. Plant Soil 347, 377–386 (2011). https://doi.org/10.1007/s11104-011-0857-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0857-0

Keywords

Navigation