, Volume 327, Issue 1-2, pp 199-212
Date: 16 Jun 2009

Effect of lime on root growth, morphology and the rhizosheath of cereal seedlings growing in an acid soil

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The effect of soil acidity on root and rhizosheath development in wheat and barley seedlings was investigated in an acid Ferrosol soil to which various amounts of lime (CaCO3) were applied to modify soil Al concentrations (pH (CaCl2): 4.22 to 5.35 and Al (CaCl2 extract): 17.7 to 0.4 mg kg−1 soil; respectively), and Ferrosol soil from an adjacent location at the same site which had a higher Al concentration (pH 4.19; 29.2 mg kg−1 Al). The cereal lines were selected on the basis of differences in their rate of root growth, Al-resistance and root hair morphology. Root morphology was assessed after 7 days of growth. The length of fine (mainly lateral) roots of Al-sensitive genotypes was more sensitive to soil Al concentrations than that of the coarse (mainly primary) roots. The experiments demonstrated that even where root growth was protected by expression of the TaALMT1 gene for Al-resistance, root-soil contact was diminished by soil acidity because root hair length (in many lines), and root hair density and rhizosheath formation (all lines) were adversely affected by soil acidity. In the case of Al-sensitive lines, fine root growth and rhizosheath mass were reduced over much the same range of soil Al concentrations (i.e. >3–6 mg kg−1 Al). Although Al-resistant lines could maintain fine root length under these conditions, they were similarly unable to maintain rhizosheath mass. This finding may help to explain why Al-resistant wheats which yield relatively well in deep acid soils, may also benefit from application of lime to the surface layers of the soil.

Responsible Editor: Tim Simon George.