, Volume 268, Issue 1, pp 271-283

Green manures and crop sequences influence alfalfa root rot and pathogen inhibitory activity among soil-borne streptomycetes

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A two-year trial was conducted to determine the effects of green manures and crop sequences on plant disease, streptomycete and bacterial densities, and inhibitory activity of indigenous streptomycetes against four target pathogens. Green manure treatments, buckwheat (Fagopyrum esculentum L.), canola (Brassica napus L.), sorghum-sudangrass (Sorghum bicolor) (L.) Moench × Sorghum sudanense (Piper) Stapf.), and fallow control were tested in conjunction with three crop sequences in a Phytophthora-infested soil placed in containers. Alfalfa (Medicago sativa L.), potato (Solanum tubersoum L.), or corn (Zea mays L.) was grown in the first year, and alfalfa was grown in all containers in the second year. Compared to fallow controls, alfalfa grown in sorghum-sudangrass- or buckwheat-treated soil had significantly greater stand counts and total biomass, respectively. In addition, alfalfa grown in fallow-treated soils had the greatest Phytophthora root rot as a function of stand count. Crop rotation also had a significant effect on alfalfa root rot and yield. Potato scab disease intensity was greatest on tubers grown in fallow-treated soils, while tubers grown in canola-treated soils had the highest yields (total tuber weight). Green-manure-treated soils tended to have greater streptomycete and bacterial densities than fallow-treated soils. In addition, buckwheat- or sorghum-sudangrass-treated soils had greater proportions of streptomycetes that were antagonistic against the target pathogens than fallow-treated soils. The proportion of antagonists in soil was negatively correlated with alfalfa root rot, and positively correlated with alfalfa stand counts. Inhibitory activity of the streptomycetes was also negatively correlated with potato scab and positively correlated with potato yield. These data suggest that green manures may provide a strategy for increasing pathogen inhibitory activity within the streptomycete community in soil, and, in conjunction with crop rotation, may contribute to the control of a diverse collection of soil-borne plant pathogens on multiple crop species.