Skip to main content

Advertisement

Log in

Characterization of five subgroups of the sieve element occlusion gene family in Glycine max reveals genes encoding non-forisome P-proteins, forisomes and forisome tails

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

P-proteins are structural phloem proteins discussed to be involved in the rapid sealing of injured sieve elements. P-proteins are found in all dicotyledonous and some monocotyledonous plants, but additional crystalloid P-proteins, known as forisomes, have evolved solely in the Fabaceae. Both types are encoded by members of the sieve element occlusion (SEO) gene family, which comprises seven phylogenetic subgroups. The Fabaceae-specific subgroup 1 contains genes encoding forisome subunits in e.g. Medicago truncatula, Vicia faba, Dipteryx panamensis and Canavalia gladiata whereas basal subgroup 5 encodes P-proteins in Nicotiana tabacum (tobacco) and Arabidopsis thaliana. The function of remaining subgroups is still unknown. We chose Glycine max (soybean) as a model to investigate SEO proteins representing different subgroups in one species. We isolated native P-proteins to determine the SEO protein composition and analyzed the expression pattern, localization and structure of the G. max SEO proteins representing five of the subgroups. We found that subgroup 1 GmSEO genes encode forisome subunits, a member of subgroup 5 encodes a non-forisome P-protein and subgroup 2 GmSEO genes encode the components of forisome tails, which are present in a restricted selection of Fabaceaen species. We therefore present the first molecular characterization of a Fabaceae non-forisome P-protein and the first evidence that forisome tails are encoded by a phylogenetically-distinct branch of the SEO gene family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anderson R, Cronshaw J (1970) Sieve-plate pores in tobacco and bean. Planta 91:173–180

    CAS  PubMed  Google Scholar 

  • Anstead JA, Froelich DR, Knoblauch M, Thompson GA (2012) Arabidopsis P-protein filament formation requires both AtSEOR1 and AtSEOR2. Plant Cell Physiol 53:1033–1042

    CAS  PubMed  Google Scholar 

  • Bald T, Barth J, Niehues A, Specht M, Hippler M, Fufezan C (2012) pymzML–Python module for high-throughput bioinformatics on mass spectrometry data. Bioinformatics 28:1052–1053

    CAS  PubMed  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bucsenez M, Rüping B, Behrens S, Twyman RM, Noll G, Prüfer D (2012) Multiple cis-regulatory elements are involved in the complex regulation of the sieve element-specific MtSEO-F1 promoter from Medicago truncatula. Plant Biol 14:714–724

    CAS  Google Scholar 

  • Collier R, Fuchs B, Walter N, Kevin Lutke W, Taylor CG (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43:449–457

    CAS  PubMed  Google Scholar 

  • Craig R, Beavis R (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467

    CAS  PubMed  Google Scholar 

  • Cronshaw J (1981) Phloem structure and function. Annu Rev Plant Physiol 32:465–484

    CAS  Google Scholar 

  • Cronshaw J, Esau K (1967) Tubular and fibrillar components of mature and differentiating sieve elements. J Cell Biol 34:801–815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cronshaw J, Esau K (1968a) P protein in the phloem of Cucurbita. I. The development of P protein bodies. J Cell Biol 38:25–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cronshaw J, Esau K (1968b) P protein in the phloem of Cucurbita. II. The P protein of mature sieve elements. J Cell Biol 38:292–303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dinant S, Lemoine R (2010) The phloem pathway: new issues and old debates. C R Biol 333:307–319

    CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Edgar R (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ehlers K, Knoblauch M, van Bel AJE (2000) Ultrastructural features of well-preserved and injured sieve elements: minute clamps keep the phloem transport conduits free for mass flow. Protoplasma 214:80–92

    Google Scholar 

  • Ernst AM, Rüping B, Jekat SB, Nordzieke S, Reineke AR, Müller B, Bornberg-Bauer E, Prüfer D, Noll GA (2011) The sieve element occlusion gene family in dicotyledonous plants. Plant Signal Behav 6:151–153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ernst AM, Jekat SB, Zielonka S, Müller B, Neumann U, Rüping B, Twyman RM, Krzyzanek V, Prüfer D, Noll GA (2012) Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem. Proc Natl Acad Sci USA 109:E1980–E1989. doi:10.1073/pnas.1202999109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Esau K (1969) The Phloem. Borntraeger, Stuttgart

    Google Scholar 

  • Esau K, Cronshaw J (1967) Tubular components in cells of healthy and tobacco mosaic virus-infected Nicotiana. Virology 33:26–35

    CAS  PubMed  Google Scholar 

  • Evert R, Eschrich W, Eichhorn SE (1972) P-protein distribution in mature sieve elements of Cucurbita maxima. Planta 109:193–210

    CAS  PubMed  Google Scholar 

  • Fisher DB (1975) Structure of functional soybean sieve elements. Plant Physiol 56:555–569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Froelich DR, Mullendore DL, Jensen KH, Ross-Elliott TJ, Anstead JA, Thompson GA, Pélissier HC, Knoblauch M (2011) Phloem ultrastructure and pressure flow: sieve-Element-Occlusion-Related agglomerations do not affect translocation. Plant Cell 23:4428–4445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964

    CAS  PubMed  Google Scholar 

  • Groscurth S, Müller B, Schwan S, Menzel M, Diekstall F, Senft M, Kendall A, Kommor BA, Neumann U, Kalischuk M, Kawchuk LM, Krzyzanek V, Heilmann A, Stubbs G, Twyman RM, Prüfer D, Noll GA (2012) Artificial forisomes are ideal models of forisome assembly and activity that allow the development of technical devices. Biomacromolecules 13:3076–3086

    CAS  PubMed  Google Scholar 

  • Höhner R, Barth J, Magneschi L, Niehues A, Bald T, Grossman A, Fufezan C, Hippler M (2013) The metabolic status drives acclimation of iron deficiency responses in Chlamydomonas reinhardtii as revealed by proteomics based hierarchical clustering and reverse genetics. Mol Cell Proteomics 12:2774–2790

    PubMed  Google Scholar 

  • Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11:97–108

    CAS  PubMed  Google Scholar 

  • Jaeger MS, Uhlig K, Clausen-Schaumann H, Duschl C (2008) The structure and functionality of contractile forisome protein aggregates. Biomaterials 29:247–256

    CAS  PubMed  Google Scholar 

  • Jekat SB, Ernst AM, von Bohl A, Zielonka S, Twyman RM, Noll GA, Prüfer D (2013) P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing. Front Plant Sci 4:225. doi:10.3389/fpls.2013.00225

    PubMed Central  PubMed  Google Scholar 

  • Jorgensen R, Atkinson R, Forster R, Lucas W (1998) An RNA-based information superhighway in plants. Science 279:1486–1487

    CAS  PubMed  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    CAS  Google Scholar 

  • Kehr JB, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92

    CAS  PubMed  Google Scholar 

  • Knoblauch M, van Bel AJE (1998) Sieve tubes in action. Plant Cell 10:35–50

    CAS  PubMed Central  Google Scholar 

  • Knoblauch M, Peters W, Ehlers K, van Bel AJE (2001) Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell 1:1221–1230

    Google Scholar 

  • Knoblauch M, Noll G, Müller T, Prüfer D, Schneider-Huther I, Scharner D, van Bel AJE, Peters WS (2003) ATP-independent contractile proteins from plants. Nat Mater 2:600–603

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  • Lawton DM (1978a) P-protein crystals do not disperse in uninjured sieve elements in roots of runner bean (Phaseolus multiflorus) fixed with glutaraldehyde. Ann Bot 42:353–361

    Google Scholar 

  • Lawton DM (1978b) Ultrastructural comparison of the tailed and tailless P-protein crystals respectively of runner bean (Phaseolus multiflorus) and garden pea (Pisum sativum) with tilting stage electron microscopy. Protoplasma 97:1–11

    CAS  Google Scholar 

  • Mrazek A (1910) Über geformte eiweißartige Inhaltskörper bei den Leguminosen. Österreichische Botanische Zeitschrift 60:218–230

    Google Scholar 

  • Müller B, Noll GA, Ernst AM, Rüping B, Groscurth S, Twyman RM, Kawchuk LM, Prüfer D (2010) Recombinant artificial forisomes provide ample quantities of smart biomaterials for use in technical devices. Appl Microbiol Biotechnol 88:689–698

    PubMed  Google Scholar 

  • Müller B, Groscurth S, Menzel M, Rüping BA, Twyman RM, Prüfer D, Noll GA (2014) Molecular and ultrastructural analysis of forisome subunits reveals the principles of forisome assembly. Ann Bot 113:1121–1137

    PubMed  Google Scholar 

  • Noll GA (2005) Molekularbiologische Charakterisierung der Forisome. Dissertation, Justus-Liebig-Universität Gießen

  • Noll GA, Fontanellaz ME, Rüping B, Ashoub A, van Bel AJ, Fischer R, Knoblauch M, Prüfer D (2007) Spatial and temporal regulation of the forisome gene for1 in the phloem during plant development. Plant Mol Biol 65:285–294

    CAS  PubMed  Google Scholar 

  • Noll GA, Rüping B, Ernst AM, Bucsenez M, Twyman RM, Fischer R, Prüfer D (2009) The promoters of forisome genes MtSEO2 and MtSEO3 direct gene expression to immature sieve elements in Medicago truncatula and Nicotiana tabacum. Plant Mol Biol Rep 27:526–533

    CAS  Google Scholar 

  • Noll GA, Müller B, Ernst AM, Rüping B, Groscurth S, Twyman RM, Kawchuk LM, Prüfer D (2011a) Characteristics of artificial forisomes from plants and yeast. Bioeng Bugs 2:111–114

    PubMed  Google Scholar 

  • Noll GA, Müller B, Ernst AM, Rüping B, Twyman RM, Prüfer D (2011b) Native and artificial forisomes: functions and applications. Appl Microbiol Biotechnol 89:1675–1682

    CAS  PubMed  Google Scholar 

  • Palevitz BA, Newcomb EH (1971) The ultrastructure and development of tubular and crystalline P-protein in the sieve elements of certain papilionaceous legumes. Protoplasma 72:399–426

    Google Scholar 

  • Pélissier HC, Peters WS, Collier R, van Bel AJE, Knoblauch M (2008) GFP tagging of Sieve Element Occlusion (SEO) proteins results in green fluorescent forisomes. Plant Cell Physiol 49:1699–1710

    PubMed Central  PubMed  Google Scholar 

  • Peters WS, Knoblauch M, Warmann SA, Schnetter R, Shen AQ, Pickard WF (2007) Tailed forisomes of Canavalia gladiata: a new model to study Ca2+-driven protein contractility. Ann Bot 100:101–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peters WS, Knoblauch M, Warmann SA, Pickard WF, Shen AQ (2008) Anisotropic contraction in forisomes: simple models won’t fit. Cell Motil Cytoskeleton 65:368–378

    CAS  PubMed  Google Scholar 

  • Peters WS, Haffer D, Hanakam CB, van Bel AJE, Knoblauch M (2010) Legume phylogeny and the evolution of a unique contractile apparatus that regulates phloem transport. Am J Bot 97:797–808

    PubMed  Google Scholar 

  • Rüping B, Ernst AM, Jekat SB, Nordzieke S, Reineke AR, Müller B, Bornberg-Bauer E, Prüfer D, Noll GA (2010) Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants. BMC Plant Biol 10:219. doi:10.1186/1471-2229-10-219

    PubMed Central  PubMed  Google Scholar 

  • Schwan S, Fritzsche M, Cismak A, Heilmann A, Spohn U (2007) In vitro investigation of the geometric contraction behavior of chemo-mechanical P-protein aggregates (forisomes). Biophys Chem 125:444–542

    CAS  PubMed  Google Scholar 

  • Schwan S, Menzel M, Fritzsche M, Heilmann A, Spohn U (2009) Micromechanical measurements on P-protein aggregates (forisomes) from Vicia faba plants. Biophys Chem 139:99–105

    CAS  PubMed  Google Scholar 

  • Sjolund RD (1997) The phloem sieve element: a river runs through it. Plant Cell 9:1137–1146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Specht M, Kuhlgert S, Fufezan C, Hippler M (2011) Proteomics to go: proteomatic enables the user-friendly creation of versatile MS/MS data evaluation workflows. Bioinformatics 27:1183–1184

    CAS  PubMed  Google Scholar 

  • Steer MW, Newcomb EH (1969) Development and dispersal of P-protein in the phloem of Coleus blumei Benth. J Cell Sci 4:155–169

    CAS  PubMed  Google Scholar 

  • Turnbull CGN, Lopez-Cobollo RM (2013) Heavy traffic in the fast lane: long-distance signalling by macromolecules. New Phytol 198:33–51

    CAS  PubMed  Google Scholar 

  • van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K (2009) The flowering world: a tale of duplications. Trends Plant Sci 14:680–688

    PubMed  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of Tomato bushy stunt virus. Plant J 33:949–956

    CAS  PubMed  Google Scholar 

  • Wergin WP, Newcomb EH (1970) Formation and dispersal of crystalline P-protein in sieve elements of soybean (Glycine max L.). Protoplasma 71:365–388

    Google Scholar 

  • Will T, van Bel AJE (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57:729–737

    CAS  PubMed  Google Scholar 

  • Young ND, Bharti AK (2012) Genome-enabled insights into legume biology. Annu Rev Plant Biol 63:283–305

    CAS  PubMed  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Google Scholar 

  • Zhu H, Choi HK, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The technical assistance of Raphael Soeur, Christiane Fischer, Claudia Hansen and Heike Hinte (Fraunhofer Institute for Molecular Biology and Applied Ecology, IME) is gratefully acknowledged. We also thank Sascha Ahrens for plant cultivation (Institute of Plant Biology and Biotechnology, University of Münster) and Lena Harig and Boje Müller (Fraunhofer Institute for Molecular Biology and Applied Ecology, IME) for critical reading of the manuscript. This work was funded by Fraunhofer internal grants.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Prüfer.

Additional information

Sascia Zielonka and Antonia M. Ernst contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zielonka, S., Ernst, A.M., Hawat, S. et al. Characterization of five subgroups of the sieve element occlusion gene family in Glycine max reveals genes encoding non-forisome P-proteins, forisomes and forisome tails. Plant Mol Biol 86, 51–67 (2014). https://doi.org/10.1007/s11103-014-0211-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0211-z

Keywords

Navigation