Skip to main content
Log in

An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ait-ali T, Rands C, Harberd NP (2003) Flexible control of plant architecture and yield via switchable expression of Arabidopsis gai. Plant Biotechnol J 1:337–343

    Article  PubMed  Google Scholar 

  • Caddick MX, Greenland AJ, Jepson I, Krause K-P, Qu N, Riddell KV, Salter MG, Schuch W, Sonnewald U, Tomsett AB (1998) An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nat Biotechnol 16:177–180

    Article  CAS  PubMed  Google Scholar 

  • Callis J, Fromm M, Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Dev 1:1183–1200

    Article  CAS  PubMed  Google Scholar 

  • De Lucca PC, Dong S, Geijskes RJC, Dunder EM, Sainz MB (2010) Methods for Agrobacterium-mediated transformation of sugar cane. Patent application WO 2010/151634A1

  • Deveaux Y, Peaucelle A, Roberts GR, Coen E, Simon R, Mizukami Y, Traas J, Murray JAH, Doonan JH, Laufs P (2003) The ethanol switch: a tool for tissue-specific gene induction during plant development. Plant J 36:918–930

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2008) http://faostat.fao.org

  • Felenbok B (1991) The ethanol utilization regulon of Aspergillus nidulans: the alcA-alcR system as a tool for the expression of recombinant proteins. J Biotechnol 17:11–18

    Article  CAS  PubMed  Google Scholar 

  • Filichkin SA, Meilan R, Busov VB, Ma C, Brunner AM, Strauss SH (2006) Alcohol-inducible gene expression in transgenic Populus. Plant Cell Rep 25:660–667

    Article  CAS  PubMed  Google Scholar 

  • Garoosi GA, Salter MG, Caddick MX, Tomsett AB (2005) Characterization of the ethanol-inducible alc gene expression system in tomato. J Exp Bot 56:1635–1642

    Article  CAS  PubMed  Google Scholar 

  • Hare PD, Chua NH (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20:575–580

    Article  CAS  PubMed  Google Scholar 

  • Harrison MD, Geijskes J, Coleman HD, Shand K, Kinkema M, Palupe A, Hassall R, Sainz M, Lloyd R, Miles S, Dale JL (2011) Accumulation of recombinant cellobiohydrolase and endoglucananse in the leaves of mature transgenic sugar cane. Plant Biotechnol J 9:884–896

    Article  CAS  PubMed  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP (2008) Meeting US Biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14:2000–2014

    Article  Google Scholar 

  • Houmard NM, Mainville JL, Bonin CP, Huang S, Luethy MH, Malvar TM (2007) High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnol J 5:605–614

    Article  CAS  PubMed  Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–134

    CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Jepson I, Greenland AJ, Caddick MX, Tomsett AB (2001) Expression system. Patent WO 01/09357

  • Lakshmanan P, Geijskes RJ, Aitken KS, Grof CPL, Bonnett GD, Smith GR (2005) Sugarcane biotechnology: the challenges and opportunities. In vitro Cell Dev Biol Plant 41:345–363

    Article  CAS  Google Scholar 

  • Laufs P, Coen E, Kronenberger J, Trass J, Doonan J (2003) Separable roles of UFO during floral development revealed by conditional restoration of gene function. Development 130:785–796

    Article  CAS  PubMed  Google Scholar 

  • Lenouvel F, Nikolaev I, Felenbok B (1997) In vitro recognition of specific DNA targets by AlcR, a zinc binuclear cluster activator different from the other proteins of this class. J Biol Chem 272:15521–15526

    Article  CAS  PubMed  Google Scholar 

  • Li R, Jia X, Mao X (2005) Ethanol-inducible gene expression system and its applications in plant functional genomics. Plant Sci 169:463–469

    Article  CAS  Google Scholar 

  • Maizel A, Weigel D (2004) Temporally and spatially controlled induction of gene expression in Arabidopsis thaliana. Plant J 38:164–171

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Sparks C, Hart CA, Thompson J, Jepson I (1999) Ecdysone agonist inducible transcription in transgenic tobacco plants. Plant J 19:97–106

    Article  CAS  PubMed  Google Scholar 

  • Moore I, Samalova M, Kurup S (2006) Transactivated and chemically inducible gene expression in plants. Plant J 45:651–683

    Article  CAS  PubMed  Google Scholar 

  • Nikolaev I, Lenouvel F, Felenbok B (1999) Unique DNA binding specificity of the binuclear zinc AlcR activator of the ethanol utilization pathway in Aspergillus nidulans. J Biol Chem 274:9795–9802

    Article  CAS  PubMed  Google Scholar 

  • Okuzaki A, K-i Konagaya, Nanasato Y, Tsuda M, Tabei Y (2011) Estogen-inducible GFP expression patterns in rice (Oryza sativa L.). Plant Cell Rep 30:529–538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ouwerkerk PBF, de Kam RJ, Hoge HC, Meijer AH (2001) Glucocorticoid-inducible gene expression in rice. Planta 213:370–378

    Article  CAS  PubMed  Google Scholar 

  • Padidam M (2003) Chemically regulated gene expression in plants. Curr Opin Plant Biol 6:169–177

    Article  CAS  PubMed  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  CAS  PubMed  Google Scholar 

  • Panozzo C, Capuano V, Fillinger S, Felenbok B (1997) The zinc binuclear cluster activator AlcR is able to bind to single sites but requires multiple repeated sites for synergistic activation of the alcA gene in Aspergillus nidulans. J Biol Chem 272:22859–22865

    Article  CAS  PubMed  Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA 88:3324–3328

    Article  CAS  PubMed  Google Scholar 

  • Roslan HA, Salter MG, Wood CD, White MR, Croft KP, Robson F, Coupland G, Doonan J, Laufs P, Tomsett AB, Caddick MX (2001) Characterization of the ethanol-inducible alc gene expression system in Arabidopsis thaliana. Plant J 28:225–235

    Article  CAS  PubMed  Google Scholar 

  • Sainz M (2009) Commerical cellulosic ethanol: the role of plant-expressed enzymes. In vitro Cell Dev Biol Plant 45:314–329

    Article  CAS  Google Scholar 

  • Salter MG, Paine JA, Riddell KV, Jepson I, Greenland AJ, Caddick MX, Tomsett AB (1998) Characterization of the ethanol-inducible alc gene expression system for transgenic plants. Plant J 16:127–132

    Article  CAS  Google Scholar 

  • Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Tumer NE, Hironaka CM, Sanders PR, Gasser CS, Aykent S, Siegel NR, Rogers SG, Fraley RT (1986) Engineering herbicide tolerance in transgenic plants. Science 233:478–481

    Article  CAS  PubMed  Google Scholar 

  • Sweetman JP, Chu C, Qu N, Greenland AJ, Sonnewald U, Jepson I (2002) Ethanol vapor is an efficient inducer of the alc gene expression system in model and crop plant species. Plant Physiol 129:943–948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Unger E, Cigan AM, Trimnell M, Xu RJ, Kendall T, Roth B, Albertsen M (2002) A chimeric ecdysone receptor facilitates methoxyfenozide-dependent restoration of male fertility in ms45 maize. Transgenic Res 11:455–465

    Article  CAS  PubMed  Google Scholar 

  • Werner S, Breus O, Symonenko Y, Marillonnet S, Gleba Y (2011) High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector. Proc Natl Acad Sci USA 108:14061–14066

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Michele Yarnall and Rachel Whinna (Syngenta Biotechnology Inc.) for carrying out all of the GUS qELISA analyses, Jamie Huang and Wenling Wang (Syngenta Biotechnology Inc.) for TaqMan analysis, Shujie Dong (Syngenta Biotechnology Inc.) for help with sample deliveries, and Kerry Caffall (Syngenta Biotechnology Inc.) for critical review of the manuscript. The authors also thank the staff at the Queensland Crop Development Facility (Department of Employment, Economic Development and Innovation, Queensland State Government) for their assistance with the growth of transgenic sugar cane. The Syngenta Centre for Sugarcane Biofuels Development is supported by Syngenta, the Queensland University of Technology, Farmacule Bioindustries, and by a grant from the National and International Research Alliances Program of the Queensland State Government. Dr. Mark Harrison is the recipient of a Smart State Fellowship from the Queensland State Government. The Queensland Crop Development Facility is funded by a grant from the Smart State Research Facilities Fund Scheme of the Queensland State Government. The work described in this manuscript is the subject of a patent application by Dr. Mark Kinkema and Dr. Manuel Sainz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Kinkema.

Additional information

Accession numbers: scoalcR (KC189903), scoGUS (KC189904), var4 (KC189905), var5 (KC189906), var8 (KC189907).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinkema, M., Geijskes, R.J., Shand, K. et al. An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane. Plant Mol Biol 84, 443–454 (2014). https://doi.org/10.1007/s11103-013-0140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0140-2

Keywords

Navigation