Skip to main content
Log in

Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Chloroplasts play critical roles in land plant cells. Despite their importance and the availability of at least 200 sequenced chloroplast genomes, the number of known DNA regulatory sequences in chloroplast genomes are limited. In this paper, we designed computational methods to systematically study putative DNA regulatory sequences in intergenic regions near chloroplast genes in seven plant species and in promoter sequences of nuclear genes in Arabidopsis and rice. We found that −35/−10 elements alone cannot explain the transcriptional regulation of chloroplast genes. We also concluded that there are unlikely motifs shared by intergenic sequences of most of chloroplast genes, indicating that these genes are regulated differently. Finally and surprisingly, we found five conserved motifs, each of which occurs in no more than six chloroplast intergenic sequences, are significantly shared by promoters of nuclear-genes encoding chloroplast proteins. By integrating information from gene function annotation, protein subcellular localization analyses, protein–protein interaction data, and gene expression data, we further showed support of the functionality of these conserved motifs. Our study implies the existence of unknown nuclear-encoded transcription factors that regulate both chloroplast genes and nuclear genes encoding chloroplast protein, which sheds light on the understanding of the transcriptional regulation of chloroplast genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allison LA, Maliga P (1995) Light-responsive and transcription-enhancing elements regulate the plastid psbD core promoter. EMBO J 14(15):3721–3730

    PubMed  CAS  Google Scholar 

  • Allison LA, Simon LD, Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15(11):2802–2809

    PubMed  CAS  Google Scholar 

  • Allocco DJ, Kohane IS, Butte AJ (2004) Quantifying the relationship between co-expression, co-regulation and gene function. BMC Bioinform 5:18

    Article  Google Scholar 

  • Arlen PA, Falconer R, Cherukumilli S, Cole A, Cole AM et al (2007) Field production and functional evaluation of chloroplast-derived interferon-alpha 2b. Plant Biotechnol J 5(4):511–525

    Article  PubMed  CAS  Google Scholar 

  • Arnone MI, Davidson EH (1997) The hardwiring of development: organization and function of genomic regulatory systems. Development (Camb, Engl) 124(10):1851–1864

    CAS  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings/international conference on intelligent systems for molecular biology; ISMB 2:28–36

  • Barbrook AC, Howe CJ, Kurniawan DP, Tarr SJ (2010) Organization and expression of organellar genomes. Philos Trans R Soc Lond 365(1541):785–797

    Article  CAS  Google Scholar 

  • Barkan A (2011) Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold. Plant Physiol 155(4):1520–1532

    Article  PubMed  CAS  Google Scholar 

  • Berends Sexton T, Jones JT, Mullet JE (1990) Sequence and transcriptional analysis of the barley ctDNA region upstream of psbD-psbC encoding trnK(UUU), rps16, trnQ(UUG), psbK, psbI, and trnS(GCU). Curr Genet 17(5):445–454

    Article  PubMed  CAS  Google Scholar 

  • Blanchette M, Tompa M (2002) Discovery of regulatory elements by a computational method for phylogenetic footprinting. Genome Res 12(5):739–748

    Article  PubMed  CAS  Google Scholar 

  • Boyle EI, Weng S, Gollub J, Jin H, Botstein D et al (2004) GO: TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics (Oxf, Engl) 20(18):3710–3715

    Article  CAS  Google Scholar 

  • Bussemaker HJ, Li H, Siggia ED (2000) Building a dictionary for genomes: identification of presumptive regulatory sites by statistical analysis. Proc Nat Acad Sci USA 97(18):10096–10100

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Hou L, Su N, Hu H, Deng M et al (2010) Systematic identification of conserved motif modules in the human genome. BMC Genomics 11(1):567

    Article  PubMed  Google Scholar 

  • Christopher DA, Kim M, Mullet JE (1992) A novel light-regulated promoter is conserved in cereal and dicot chloroplasts. Plant Cell 4(7):785–798

    PubMed  CAS  Google Scholar 

  • Daniell H, Lee SB, Panchal T, Wiebe PO (2001) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311(5):1001–1009

    Article  PubMed  CAS  Google Scholar 

  • de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics (Oxf, Engl) 20(9):1453–1454

    Article  Google Scholar 

  • Dempster A, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc 39(1):1–38

    Google Scholar 

  • Ferro M, Brugiere S, Salvi D, Seigneurin-Berny D, Court M et al (2010) AT_CHLORO, a comprehensive chloroplast proteome database with sub plastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9(6):1063–1084

    Article  PubMed  CAS  Google Scholar 

  • Frith MC, Li MC, Weng Z (2003) Cluster-buster: finding dense clusters of motifs in DNA sequences. Nucleic Acids Res 31(13):3666–3668

    Article  PubMed  CAS  Google Scholar 

  • Gatenby AA, Rothstein SJ, Nomura M (1989) Translational coupling of the maize chloroplast atpB and atpE genes. Proc Nat Acad Sci USA 86(11):4066–4070

    Article  PubMed  CAS  Google Scholar 

  • Gillham NW, Boynton JE, Hauser CR (1994) Translational regulation of gene expression in chloroplasts and mitochondria. Annu Rev Genet 28:71–93

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont M (1998) Coordination of nuclear and chloroplast gene expression in plant cells. Int Rev Cytol 177:115–180

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz PT, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16(13):4041–4048

    Article  PubMed  CAS  Google Scholar 

  • Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH (2007) SUBA: the arabidopsis subcellular database. Nucleic Acids Res 35(Database issue):D213–D218

    Article  PubMed  CAS  Google Scholar 

  • Hertz GZ, Stormo GD (1999) Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics (Oxf, Engl) 15(7–8):563–577

    Article  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27(1):297–300

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Hu H, Li X (2008) MOPAT: a graph-based method to predict recurrent cis-regulatory modules from known motifs. Nucleic Acids Res 36(13):4488–4497

    Article  PubMed  CAS  Google Scholar 

  • Hughes JD, Estep PW, Tavazoie S, Church GM (2000) Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 296(5):1205–1214

    Article  PubMed  CAS  Google Scholar 

  • Iratni R, Baeza L, Andreeva A, Mache R, Lerbs-Mache S (1994) Regulation of rDNA transcription in chloroplasts: promoter exclusion by constitutive repression. Gene Dev 8(23):2928–2938

    Article  PubMed  CAS  Google Scholar 

  • Jarvis P (2008) Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol 179(2):257–285

    Article  PubMed  CAS  Google Scholar 

  • Jung HS, Chory J (2010) Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway? Plant Physiol 152(2):453–459

    Article  PubMed  CAS  Google Scholar 

  • Kakizaki T, Matsumura H, Nakayama K, Che FS, Terauchi R et al (2009) Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus retrograde signaling. Plant Physiol 151(3):1339–1353

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3(3):109–136

    Article  PubMed  CAS  Google Scholar 

  • Kaundal R, Saini R, Zhao PX (2010) Combining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis. Plant Physiol 154(1):36–54

    Article  PubMed  CAS  Google Scholar 

  • Kessler F, Schnell D (2009) Chloroplast biogenesis: diversity and regulation of the protein import apparatus. Curr Opin Cell Biol 21(4):494–500

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Mullet JE (1995) Identification of a sequence-specific DNA binding factor required for transcription of the barley chloroplast blue light-responsive psbD-psbC promoter. Plant Cell 7(9):1445–1457

    PubMed  CAS  Google Scholar 

  • Kleffmann T, Hirsch-Hoffmann M, Gruissem W, Baginsky S (2006) plprot: a comprehensive proteome database for different plastid types. Plant Cell Physiol 47(3):432–436

    Article  PubMed  CAS  Google Scholar 

  • Koya V, Moayeri M, Leppla SH, Daniell H (2005) Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infect Immun 73(12):8266–8274

    Article  PubMed  CAS  Google Scholar 

  • Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF et al (1993) Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science (New York, NY) 262(5131):208–214

    Article  CAS  Google Scholar 

  • Leister D, Wang X, Haberer G, Mayer KF, Kleine T (2011) Intracompartmental and intercompartmental transcriptional networks coordinate the expression of genes for organellar functions. Plant Physiol 157(1):386–404

    Article  PubMed  CAS  Google Scholar 

  • Lerbs-Mache S (2011) Function of plastid sigma factors in higher plants: regulation of gene expression or just preservation of constitutive transcription? Plant Mol Biol 76(3–5):235–249

    Article  PubMed  CAS  Google Scholar 

  • Li X, Wong WH (2005) Sampling motifs on phylogenetic trees. Proc Nat Acad Sci USA 102(27):9481–9486

    Article  PubMed  CAS  Google Scholar 

  • Li X, Zhong S, Wong WH (2005) Reliable prediction of transcription factor binding sites by phylogenetic verification. Proc Nat Acad Sci USA 102(47):16945–16950

    Article  PubMed  CAS  Google Scholar 

  • Liere K, Weihe A, Borner T (2011) The transcription machineries of plant mitochondria and chloroplasts: composition, function, and regulation. J Plant Physiol 168(12):1345–1360

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Brutlag DL, Liu JS (2001) BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pacific symposium on biocomputing, pp 127–138

  • Maliga P, Bock R (2011) Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol 155(4):1501–1510

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hapsmann S, Hasegawa M et al (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393(6681):162–165

    Article  PubMed  CAS  Google Scholar 

  • Mayfield SP, Cohen A, Danon A, Yohn CB (1994) Translation of the psbA mRNA of Chlamydomonas reinhardtii requires a structured RNA element contained within the 5′ untranslated region. J Cell Biol 127(6 Pt 1):1537–1545

    Article  PubMed  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ et al (2007) The chlamydomonas genome reveals the evolution of key animal and plant functions. Science (New York, NY) 318(5848):245–250

    Article  CAS  Google Scholar 

  • Obayashi T, Nishida K, Kasahara K, Kinoshita K (2011) ATTED-II updates: condition-specific gene coexpression to extend coexpression analyses and applications to a broad range of flowering plants. Plant Cell Physiol 52(2):213–219

    Article  PubMed  CAS  Google Scholar 

  • Olson JM (2006) Photosynthesis in the Archean era. Photosynth Res 88(2):109–117

    Article  PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Nilsson A, Tullberg A, Link G, Allen JF (1999) Direct transcriptional control of the chloroplast genes psbA and psaAB adjusts photosynthesis to light energy distribution in plants. IUBMB Life 48(3):271–276

    PubMed  CAS  Google Scholar 

  • Puthiyaveetil S, Allen JF (2008) Transients in chloroplast gene transcription. Biochem Biophys Res Commun 368(4):871–874

    Article  PubMed  CAS  Google Scholar 

  • Richly E, Leister D (2004) An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice. Gene 329:11–16

    Article  PubMed  CAS  Google Scholar 

  • Rochaix JD (2001) Posttranscriptional control of chloroplast gene expression. From RNA to photosynthetic complex. Plant Physiol 125(1):142–144

    Article  PubMed  CAS  Google Scholar 

  • Roth FP, Hughes JD, Estep PW, Church GM (1998) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol 16(10):939–945

    Article  PubMed  CAS  Google Scholar 

  • Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152(4):2088–2104

    Article  PubMed  CAS  Google Scholar 

  • Samson N, Bausher MG, Lee SB, Jansen RK, Daniell H (2007) The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships amongst angiosperms. Plant Biotechnol J 5(2):339–353

    Article  PubMed  CAS  Google Scholar 

  • Schweer J, Turkeri H, Kolpack A, Link G (2011) Role and regulation of plastid sigma factors and their functional interactors during chloroplast transcription—recent lessons from Arabidopsis thaliana. Eur J Cell Biol 89(12):940–946

    Article  Google Scholar 

  • Shiina T, Tsunoyama Y, Nakahira Y, Khan MS (2005) Plastid RNA polymerases, promoters, and transcription regulators in higher plants. Int Rev Cytol 244:1–68

    Article  PubMed  CAS  Google Scholar 

  • Sinha S, Blanchette M, Tompa M (2004) PhyME: a probabilistic algorithm for finding motifs in sets of orthologous sequences. BMC Bioinform 5:170

    Article  Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438

    Google Scholar 

  • Sokal R, Michener C (1985) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438

    Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Nat Acad Sci USA 100(16):9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Stormo GD, Hartzell GW 3rd (1989) Identifying protein-binding sites from unaligned DNA fragments. Proc Nat Acad Sci USA 86(4):1183–1187

    Article  PubMed  CAS  Google Scholar 

  • Sun E, Wu BW, Tewari KK (1989) In vitro analysis of the pea chloroplast 16S rRNA gene promoter. Mol Cell Biol 9(12):5650–5659

    PubMed  CAS  Google Scholar 

  • Sun Q, Zybailov B, Majeran W, Friso G, Olinares PD et al (2009) PPDB, the plant proteomics database at cornell. Nucleic Acids Res 37(Database issue):D969–D974

    Article  PubMed  CAS  Google Scholar 

  • Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–D568

    Article  PubMed  Google Scholar 

  • Taboada B, Verde C, Merino E (2010) High accuracy operon prediction method based on STRING database scores. Nucleic Acids Res 38(12):e130

    Article  PubMed  Google Scholar 

  • Thum KE, Kim M, Morishige DT, Eibl C, Koop HU et al (2001) Analysis of barley chloroplast psbD light-responsive promoter elements in transplastomic tobacco. Plant Mol Biol 47(3):353–366

    Article  PubMed  CAS  Google Scholar 

  • Tsunoyama Y, Ishizaki Y, Morikawa K, Kobori M, Nakahira Y et al (2004) Blue light-induced transcription of plastid-encoded psbD gene is mediated by a nuclear-encoded transcription initiation factor, AtSig5. Proc Nat Acad Sci USA 101(9):3304–3309

    Article  PubMed  CAS  Google Scholar 

  • Tullberg A, Alexciev K, Pfannschmidt T, Allen JF (2000) Photosynthetic electron flow regulates transcription of the psaB gene in pea (Pisum sativum L.) chloroplasts through the redox state of the plastoquinone pool. Plant Cell Physiol 41(9):1045–1054

    Article  PubMed  CAS  Google Scholar 

  • van Helden J, Andre B, Collado-Vides J (1998) Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol Biol 281(5):827–842

    Article  PubMed  Google Scholar 

  • Verma D, Samson NP, Koya V, Daniell H (2008) A protocol for expression of foreign genes in chloroplasts. Nat Protoc 3(4):739–758

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Stormo GD (2003) Combining phylogenetic data with co-regulated genes to identify regulatory motifs. Bioinform (Oxf, Engl) 19(18):2369–2380

    Article  CAS  Google Scholar 

  • Wingender E, Dietze P, Karas H, Knuppel R (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 24(1):238–241

    Article  PubMed  CAS  Google Scholar 

  • Yada T, Nakao M, Totoki Y, Nakai K (1999) Modeling and predicting transcriptional units of Escherichia coli genes using hidden Markov models. Bioinform (Oxf, Engl) 15(12):987–993

    Article  CAS  Google Scholar 

  • Yu J, Langridge WH (2001) A plant-based multicomponent vaccine protects mice from enteric diseases. Nat Biotechnol 19(6):548–552

    Article  PubMed  CAS  Google Scholar 

  • Yu QB, Li G, Wang G, Sun JC, Wang PC et al (2008) Construction of a chloroplast protein interaction network and functional mining of photosynthetic proteins in Arabidopsis thaliana. Cell Res 18(10):1007–1019

    Article  PubMed  CAS  Google Scholar 

  • Zhelyazkova P, Sharma CM, Forstner KU, Liere K, Vogel J et al (2012) The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the dominating role of the plastid-encoded RNA polymerase. Plant Cell 24(1):123–136

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Wong WH (2004) CisModule: de novo discovery of cis-regulatory modules by hierarchical mixture modeling. Proc Nat Acad Sci USA 101(33):12114–12119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by two National Science Foundation grants 1125676 and 1149955 (to HH). We sincerely appreciate the helpful comments by the two reviewers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyan Hu or Xiaoman Li.

Additional information

Ying Wang and Jun Ding are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 668 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Ding, J., Daniell, H. et al. Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins. Plant Mol Biol 80, 177–187 (2012). https://doi.org/10.1007/s11103-012-9938-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9938-6

Keywords

Navigation