Plant Molecular Biology

, Volume 80, Issue 2, pp 131–155

The expression of a naturally occurring, truncated allele of an α-SNAP gene suppresses plant parasitic nematode infection

  • Prachi D. Matsye
  • Gary W. Lawrence
  • Reham M. Youssef
  • Kyung-Hwan Kim
  • Katheryn S. Lawrence
  • Benjamin F. Matthews
  • Vincent P. Klink
Article

DOI: 10.1007/s11103-012-9932-z

Cite this article as:
Matsye, P.D., Lawrence, G.W., Youssef, R.M. et al. Plant Mol Biol (2012) 80: 131. doi:10.1007/s11103-012-9932-z

Abstract

Transcriptional mapping experiments of the major soybean cyst nematode resistance locus, rhg1, identified expression of the vesicular transport machinery component, α soluble NSF attachment protein (α-SNAP), occurring during defense. Sequencing the α-SNAP coding regions from the resistant genotypes G. max[Peking/PI 548402] and G. max[PI 437654] revealed they are identical, but differ from the susceptible G. max[Williams 82/PI 518671] by the presence of several single nucleotide polymorphisms. Using G. max[Williams 82/PI 518671] as a reference, a G → T2,822 transversion in the genomic DNA sequence at a functional splice site of the α-SNAP[Peking/PI 548402] allele produced an additional 17 nucleotides of mRNA sequence that contains an in-frame stop codon caused by a downstream G → A2,832 transition. The G. max[Peking/PI 548402] genotype has cell wall appositions (CWAs), structures identified as forming as part of a defense response by the activity of the vesicular transport machinery. In contrast, the 17 nt α-SNAP[Peking/PI 548402] mRNA motif is not found in G. max[PI 88788] that exhibits defense to H. glycines, but lack CWAs. The α-SNAP[PI 88788] promoter contains sequence elements that are nearly identical to the α-SNAP[Peking/PI 548402] allele, but differs from the G. max[Williams 82/PI 518671] ortholog. Overexpressing the α-SNAP[Peking/PI 548402] allele in the susceptible G. max[Williams 82/PI 518671] genotype suppressed H. glycines infection. The experiments indicate a role for the vesicular transport machinery during infection of soybean by the soybean cyst nematode. However, increased GmEREBP1, PR1, PR2, PR5 gene activity but suppressed PR3 expression accompanied the overexpression of the α-SNAP[Peking/PI 548402] allele prior to infection.

Keywords

SoybeanGlycine maxSoybean cyst nematodeSCNHeterodera glycinesMicroarrayIllumina, gene expressionPlant pathogenParasiteAffymetrix®Laser microdissectionPI 88788PekingPI 548402Transcriptome, genome, gene expression, pathway analyses, rhg1

Supplementary material

11103_2012_9932_MOESM1_ESM.xls (34 kb)
Supplemental Table 1. PCR primers used for cloning experiments. Column 1: Construct, the targeted gene; Column 2: Genetic background, the employed genotype; Column 3: Primer, the primer used in the reaction (XLS 34 kb)
11103_2012_9932_MOESM2_ESM.xlsx (125 kb)
Supplemental Table 2. Analysis of promoter sequences of α-SNAP[PI 88788], α-SNAP[Peking/PI 548402] and α-SNAP[Williams 82/PI 518671] (XLSX 124 kb)
11103_2012_9932_MOESM3_ESM.doc (32 kb)
Supplemental Figure 1. Alignment of α-SNAP proteins. G. max (W 82) (G. max[Williams 82/PI 518671]) (Glyma18g02590); G. max (Peking)(G. max[Peking/PI 548402]); A. thaliana (ATG56190); Oryzasativa (rice) (Os0818110); human (NM_003827); C. elegans (NM_072698); yeast (Saccharomyces cerevisiae) (YBL050 W); Drosophila melanogaster (AAF49035) (DOC 32 kb)
11103_2012_9932_MOESM4_ESM.doc (46 kb)
Supplemental Figure 2. Alignment of the promoter sequences of α-SNAP[PI 88788], α-SNAP[Peking/PI 548402] and α-SNAP[Williams 82/PI 518671] (DOC 46 kb)

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Prachi D. Matsye
    • 1
  • Gary W. Lawrence
    • 2
  • Reham M. Youssef
    • 3
    • 4
  • Kyung-Hwan Kim
    • 5
  • Katheryn S. Lawrence
    • 6
  • Benjamin F. Matthews
    • 3
  • Vincent P. Klink
    • 1
  1. 1.Department of Biological SciencesMississippi State UniversityMississippi StateUSA
  2. 2.Department of Biochemistry, Molecular Biology, Entomology and Plant PathologyMississippi State UniversityStarkvilleUSA
  3. 3.United States Department of Agriculture-Agricultural Research ServiceHenry A. Wallace Beltsville Agricultural Research Center, Plant Sciences Institute, Soybean Genomics and Improvement LaboratoryBeltsvilleUSA
  4. 4.Department of Plant Protection, Faculty of AgricultureFayoum UniversityAl FayoumEgypt
  5. 5.Cell and Genetics DivisionNational Institute of Agricultural Biotechnology, Rural Development AdministrationSuwonSouth Korea
  6. 6.Department of Entomology and Plant PathologyAuburn UniversityAuburnUSA