Skip to main content
Log in

AINTEGUMENTA-LIKE6 regulates cellular differentiation in flowers

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

During flower development, pluripotent stem cells within the floral meristem give rise to proliferative precursor cells whose progeny eventually acquire specialized functions within each floral organ. The regulatory mechanisms by which plant cells transition from a proliferating state to a differentiated state are not well characterized. Several members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) transcription factor family, including AINTEGUMENTA (ANT) and AIL6/PLT3, are important regulators of cell proliferation in flowers. To further investigate the role of AIL6 during flower development, we have characterized transgenic plants in which the coding region of AIL6 was expressed under the control of the constitutive 35S promoter (35S:cAIL6). These plants display changes in floral organ size and morphology that are associated with alterations in the pattern and duration of cell divisions within developing organs. In addition, we find that very high levels of AIL6 expression inhibit cellular differentiation. In contrast, ant ail6 double mutants display premature differentiation of floral meristem cells. These results indicate that these two transcription factors regulate both proliferation and differentiation in flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad Sci Ser III Sci Vie 316:1194–1199

    CAS  Google Scholar 

  • Breuninger H, Lenhard M (2010) Control of tissue and organ growth in plants. Curr Top Dev Biol 91:185–220

    Article  PubMed  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  PubMed  CAS  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    Article  PubMed  CAS  Google Scholar 

  • Feng J-X, Liu D, Pan Y, Gong W, Ma L-G, Luo J-C, Deng XW, Zhu Y-X (2005) An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. Plant Mol Biol 59:853–868

    Article  PubMed  CAS  Google Scholar 

  • Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Irish VF (2010) The flowering of Arabidopsis flower development. Plant J 61:1014–1028

    Article  PubMed  CAS  Google Scholar 

  • Ito T (2011) Coordination of flower development by homeotic master regulators. Curr Opin Plant Biol 14:53–59

    Article  PubMed  Google Scholar 

  • Kaufmann K, Muino JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC (2009) Targets of the transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7:e1000090

    Article  PubMed  Google Scholar 

  • Kaufmann K, Wellmer F, Muino JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueno F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2010) Orchestration of floral initiation by APETALA1. Science 328:85–89

    Article  PubMed  CAS  Google Scholar 

  • Klucher KM, Chow H, Reiser L, Fischer RL (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8:137–153

    Article  PubMed  CAS  Google Scholar 

  • Krizek BA (1999) Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Dev Genet 25:224–236

    Article  PubMed  CAS  Google Scholar 

  • Krizek BA (2009) AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning. Plant Physiol 150:1916–1929

    Article  PubMed  CAS  Google Scholar 

  • Krizek BA (2011) Aintegumenta and Aintegumenta-Like6 regulate auxin-mediated flower development in Arabidopsis. BMC Res Notes 4:176

    Article  PubMed  Google Scholar 

  • Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698

    Article  PubMed  CAS  Google Scholar 

  • Melzer R, Theissen G (2009) Reconstitution of ‘floral quartets’ in vitro involving class B and class E floral homeotic proteins. Nucleic Acids Res 37:2723–2736

    Article  PubMed  CAS  Google Scholar 

  • Melzer R, Verelst W, Theissen G (2009) The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartets’-like complexes in vitro. Nucleic Acids Res 37:144–157

    Article  PubMed  CAS  Google Scholar 

  • Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97:942–947

    Article  PubMed  CAS  Google Scholar 

  • Nole-Wilson S, Tranby T, Krizek BA (2005) AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol Biol 57:613–628

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantitation in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Sablowski R (2010) Genes and functions controlled by floral organ identity genes. Semin Cell Dev Biol 21:94–99

    Article  PubMed  CAS  Google Scholar 

  • Sakai WS (1973) Simple method for differential staining of parafiin embedded plant material using toluidine blue O. Stain Technol 48:247–249

    PubMed  CAS  Google Scholar 

  • Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  CAS  Google Scholar 

  • Verwoerd TC, Dekker BMM, Hoekema A (1989) A small scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res 17:2362

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1045–1062

    Google Scholar 

Download references

Acknowledgments

We thank Soumitra Ghoshroy and the Electron Microscopy Center staff for advice on the use of the SEM and the ABRC for the F12B17 BAC clone. This work was supported by National Science Foundation (NSF) grant IOS 0922367.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth A. Krizek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krizek, B.A., Eaddy, M. AINTEGUMENTA-LIKE6 regulates cellular differentiation in flowers. Plant Mol Biol 78, 199–209 (2012). https://doi.org/10.1007/s11103-011-9844-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9844-3

Keywords

Navigation