Skip to main content
Log in

Functional characterization of two new members of the caffeoyl CoA O-methyltransferase-like gene family from Vanilla planifolia reveals a new class of plastid-localized O-methyltransferases

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Caffeoyl CoA O-methyltransferases (OMTs) have been characterized from numerous plant species and have been demonstrated to be involved in lignin biosynthesis. Higher plant species are known to have additional caffeoyl CoA OMT-like genes, which have not been well characterized. Here, we identified two new caffeoyl CoA OMT-like genes by screening a cDNA library from specialized hair cells of pods of the orchid Vanilla planifolia. Characterization of the corresponding two enzymes, designated Vp-OMT4 and Vp-OMT5, revealed that in vitro both enzymes preferred as a substrate the flavone tricetin, yet their sequences and phylogenetic relationships to other enzymes are distinct from each other. Quantitative analysis of gene expression indicated a dramatic tissue-specific expression pattern for Vp-OMT4, which was highly expressed in the hair cells of the developing pod, the likely location of vanillin biosynthesis. Although Vp-OMT4 had a lower activity with the proposed vanillin precursor, 3,4-dihydroxybenzaldehyde, than with tricetin, the tissue specificity of expression suggests it may be a candidate for an enzyme involved in vanillin biosynthesis. In contrast, the Vp-OMT5 gene was mainly expressed in leaf tissue and only marginally expressed in pod hair cells. Phylogenetic analysis suggests Vp-OMT5 evolved from a cyanobacterial enzyme and it clustered within a clade in which the sequences from eukaryotic species had predicted chloroplast transit peptides. Transient expression of a GFP-fusion in tobacco demonstrated that Vp-OMT5 was localized in the plastids. This is the first flavonoid OMT demonstrated to be targeted to the plastids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agati G, Tattini M (2010) Multiple functional roles of flavonoids in photoprotection. New Phytol 186:786–793

    Article  PubMed  CAS  Google Scholar 

  • Agati G, Matteini P, Goti A, Tattini M (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol 174:77–89

    Article  PubMed  CAS  Google Scholar 

  • Bhushan S, Kuhn C, Berglund A-K, Roth C, Glaser E (2006) The role of the N-terminal domain of chloroplast targeting peptides in organellar protein import and miss-sorting. FEBS Lett 580:3966–3972

    Article  PubMed  CAS  Google Scholar 

  • Bouvier R, Linka N, Isner J-C, Mutterer J, Weber APM, Camara B (2006) Arabidopsis SAMT1 defines a plastid transporter regulating plastid biogenesis and plant development. Plant Cell 18:3088–3105

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA (2011) Vanillin biosynthesis–not as simple as it seems? In: Havkin-Frenkel D, Belanger FC (eds) Handbook of Vanilla science and technology. Wiley-Blackwell, Oxford, pp 292–298

    Google Scholar 

  • Do C-T, Pollet B, Thevenin J, Sibout R, Denoue D, Barriere Y, Lapierre C, Jouanin L (2007) Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226:1117–1129

    Article  PubMed  CAS  Google Scholar 

  • Dunlevy JD, Soote KL, Perkins MV, Dennis EG, Keyzers RA, Kalua CM, Boss PK (2010) Two O-methyltransferases involved in the biosynthesis of methoxypyrazines: grape-derived aroma compounds important to wine flavour. Plant Mol Biol 74:77–89

    Article  PubMed  CAS  Google Scholar 

  • Earley K, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:9780984

    Article  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971

    Article  PubMed  CAS  Google Scholar 

  • Fellenberg C, Milkowski C, Hause B, Lange P-R, Bottcher C, Schmidt J, Vogt T (2008) Tapetum-specific location of a cation-dependent O-methyltransferase in Arabidopsis thaliana. Plant J 56:132–145

    Article  PubMed  CAS  Google Scholar 

  • Ferrer J-L, Zubieta C, Dixon RA, Noel JP (2005) Crystal structures of alfalfa caffeoyl coenzyme A 3-O-methyltransferase. Plant Physiol 137:1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Goujon T, Sibout R, Pollet B, Maba B, Nussaume L, Bechtold N, Lu F, Ralph J, Mila I, Barriere Y, Lapierre C, Jouanin L (2003) A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol Biol 51:973–989

    Article  PubMed  CAS  Google Scholar 

  • Grienenberger E, Besseu S, Geoffroy P, Debayle D, Heintz D, Lapierre C, Pollet B, Heitz T, Legrand M (2009) A BAHD acyltransferase is expressed in the tapetum of Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines. Plant J 58:246–259

    Article  PubMed  CAS  Google Scholar 

  • Guo D, Chen F, Inou K, Blount JW, Dixon RA (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88

    Article  PubMed  CAS  Google Scholar 

  • Hamberger B, Ellis M, Friedman M, de Azevedo Souz C, Barbazuk B, Douglas CJ (2007) Genome-wide analyses of phenylpropanoid-related genes in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa: the Populus lignin toolbox and conservation and diversification of angiosperm gene families. Can J Bot 85:1182–1201

    Article  CAS  Google Scholar 

  • Hugueney P, Provenzano S, Verries C, Ferrandino A, Meudec E, Batelli G, Merdinoglu D, Cheynier V, Schubert A, Ageorges A (2009) A novel cation-dependent O-methyltransferase involved in anthocyanin methylation in grapevine. Plant Physiol 150:2057–2070

    Article  PubMed  CAS  Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5:224–229

    Article  PubMed  CAS  Google Scholar 

  • Ibdah M, Zhang X-H, Schmidt J, Vogt T (2003) A novel Mg2+-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. J Biol Chem 278:43961–43972

    Article  PubMed  CAS  Google Scholar 

  • Joel DM, French JC, Graft N, Kourteva G, Dixon RA, Havkin-Frenkel D (2003) A hairy tissue produces vanillin. Israel J Plant Sci 51:157–159

    Article  CAS  Google Scholar 

  • Joshi CP, Chiang VL (1998) Conserved sequence motifs in plant S-adenosyl-l-methionine-dependent methyltransferases. Plant Mol Biol 37:663–674

    Article  PubMed  CAS  Google Scholar 

  • Konieczny MPJ, Benz I, Hollinderbaumer B, Beinke C, Niederweis M, Schmidt MA (2001) Modular organization of the AIDA autotransporter translocator: the N-terminal β1-domain is surface-exposed and stabilizes the transmembrane β2-domain. Antonie van Leeuwenhoek 80:19–34

    Article  PubMed  CAS  Google Scholar 

  • Kopycki JG, Stubbs MT, Brandt W, Hagemann M, Porzel A, Schmidt J, Schliemann W, Zenk MH, Vogt T (2008) Functional and structural characterization of a cation-dependent O-methyltransferae from the cyanobacterium Synechocystis sp. strain PCC 6803. J Biol Chem 283:20888–20896

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lam KC, Ibrahim RK, Behdad B, Dayanandan S (2007) Structure, function, and evolution of plant O-methyltransferases. Genome 50:1001–1013

    Article  PubMed  CAS  Google Scholar 

  • Lee YJ, Kim BG, Chong Y, Lim Y, Ahn J-H (2008) Cation dependent O-methyltransferases from rice. Planta 227:641–647

    Article  PubMed  CAS  Google Scholar 

  • Li HM, Rotter D, Hartman TG, Pak FE, Havkin-Frenkel D, Belanger FC (2006) Evolution of novel O-methyltransferases from the Vanilla planifolia caffeic acid O-methyltransferase. Plant Mol Biol 61:537–552

    Article  PubMed  CAS  Google Scholar 

  • Ligrone R, Carafa A, Duckett JG, Renzaglia KS, Ruel K (2008) Immunocytochemical detection of lignin-related epitopes in cell walls in bryophytes and the charalean alga Nitella. Plant Syst Evol 270:257–272

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lucker J, Martens S, Lund ST (2010) Characterization of a Vitis vinifera cv. Cabernet Sauvignon 3′, 5′-O-methyltransferase showing strong preference for anthocyanins and glycosylated flavonols. Phytochemistry 71:1474–1484

    Article  PubMed  Google Scholar 

  • Lunkenbein S, Salentijn EMJ, Coiner HA, Boone MJ, Krens FA, Schwab W (2006) Up-and down-regulation of Fragaria x ananassa O-methyltransferase: impacts on furanone and phenylpropanoid metabolism. J Exp Bot 57:2445–2453

    Article  PubMed  CAS  Google Scholar 

  • Pak FE, Gropper S, Dai WD, Havkin-Frenkel D, Belanger FC (2004) Characterization of a multifunctional methyltransferase from the orchid Vanilla planifolia. Plant Cell Rep 22:959–966

    Article  PubMed  CAS  Google Scholar 

  • Pakusch A-E, Matern U (1991) Kinetic characterization of caffeoyl-coenzyme A-specific 3-O-methyltransferase from elicited parsley cell suspensions. Plant Physiol 96:327–330

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    Article  PubMed  CAS  Google Scholar 

  • Rausher MD (2006) The evolution of flavonoids and their genes. In: Groteworld E (ed) The science of flavonoids. Springer, New York, pp 175–211

    Chapter  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  PubMed  CAS  Google Scholar 

  • Rozema J, Bjorn LO, Bornman JF, Gaberscik A, Hader D-P, Trost T, Germ M, Klisch M, Groniger A, Sinha RP, Lebert M, He Y-Y, Buffoni-Hall R, de Bakker NVJ, van de Staaij J, Meijkamp BB (2002) The role of UV-B radiation in aquatic and terrestrial ecosystems: an experimental and functional analysis of the evolution of UV-absorbing compounds. J Photochem Photobiol B Biol 66:2–12

    Article  CAS  Google Scholar 

  • Swofford L (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • The French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–468

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tsai C-J, Harding SA, Tschaplinski TJ, Lindroth RL, Yuan Y (2006) Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytol 172:47–62

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Pichersky E (1999) Identification of specific residues involved in substrate discrimination in two plant O-methyltransferases. Arch Biochem Biophys 368:172–180

    Article  PubMed  CAS  Google Scholar 

  • Wein M, Lavid N, Lunkenbein S, Lewinsohn E, Schwab W, Kaldenhoff R (2002) Isolation, cloning and expression of a multifunctional O-methyltransferase capable of forming 2, 5-dimethyl-4-methoxy-3(2H)-furanone, one of the key aroma compounds in strawberry fruits. Plant J 31:755–765

    Article  PubMed  CAS  Google Scholar 

  • Wollenweber E, Dorr M (2008) Occurrence and distribution of the flavone tricetin and its methyl derivatives as free aglycones. Nat Prod Commun 3:1293–1298

    CAS  Google Scholar 

  • Wu K, Chung L, Revill WP, Katz L, Reeves CD (2000) The FK520 gene cluster of Streptomyces hygroscopicus var. ascomyceticus (ATCC 14891) contains genes for biosynthesis of unusual polyketide extender units. Gene 251:81–90

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Morrison WH III, Negrel J, Ye Z-H (1998) Dual methylation pathways in lignin biosynthesis. Plant Cell 10:2033–2045

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Morrison WH III, Himmelsbach DS, Poole FL II, Ye Z-H (2000) Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol 124:563–577

    Article  PubMed  CAS  Google Scholar 

  • Zhou J-M, Ibrahim RK (2010) Tricin–a potential multifunctional nutraceutical. Phytochem Rev 9:413–424

    Article  CAS  Google Scholar 

  • Zhou J-M, Gold ND, Martin VJJ, Wollenweber E, Ibrahim RK (2006) Sequential O-methylation of tricetin by a single gene product in wheat. Biochim Biophys Acta 1760:1115–1124

    PubMed  CAS  Google Scholar 

  • Zimmer R, Gibbins AMV (1997) Construction and characterization of a large-fragment chicken bacterial artificial chromosome library. Genomics 42:217–226

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Richard A. Dixon for supplying some of the OMT substrates. We acknowledge NIH grant S10RR025424 to Nilgun Tumer for a confocal microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faith C. Belanger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Widiez, T., Hartman, T.G., Dudai, N. et al. Functional characterization of two new members of the caffeoyl CoA O-methyltransferase-like gene family from Vanilla planifolia reveals a new class of plastid-localized O-methyltransferases. Plant Mol Biol 76, 475–488 (2011). https://doi.org/10.1007/s11103-011-9772-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9772-2

Keywords

Navigation