, Volume 73, Issue 3, pp 251-269
Date: 16 Feb 2010

Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Using the Affymetrix poplar genome array, we explored the leaf transcriptome of salt-tolerant Populus euphratica Oliv. and salt-sensitive P. popularis 35-44 (P. popularis) under control and saline conditions. Our objective was to clarify the genomic differences in regulating K+/Na+ and reactive oxygen species (ROS) homeostasis between the two species. Compared to P. popularis, salt-tolerant P. euphratica responses to salinity involved induction of a relatively larger number of probesets after short-term (ST) exposure to 150 mM NaCl (24 h) and relatively fewer probesets after a long-term (LT) exposure to salinity (200 mM NaCl, 28 days). Compared to P. popularis, leaves of the control P. euphratica plants exhibited a higher transcript abundance of genes related to Na+/H+ antiport (Na+/H+ antiporters, H+ pumps) and K+ uptake and transport. Notably, the expression of these genes did not decrease (with a few exceptions) during salt treatment. Regarding ROS homeostasis, P. euphratica exhibited rapid up-regulation of a variety of antioxidant enzymes after exposure to ST salinity, indicating a rapid adaptive response to salt stress. However, the effect of NaCl on transcription in P. popularis leaves was more pronounced after exposure to prolonged salinity. LT-stressed P. popularis up-regulated some genes mediating K+/Na+ homeostasis but decreased transcription of main scavengers of superoxide radicals and H2O2 except for some isoforms of a few scavengers. Mineral and ROS analyses show that NaCl induced a marked increase of leaf Na+ and H2O2 in LT-stressed plants of the two species and the effects were even more pronounced in the salt-sensitive poplar. We place the transcription results in the context of our physiological measurements to infer some implications of NaCl-induced alterations in gene expression related to K+/Na+ and ROS homeostasis.

Mingquan Ding, Peichen Hou, Xin Shen, Meijuan Wang and Shurong Deng contributed equally to this work.