, Volume 70, Issue 1-2, pp 173-192
Date: 07 Feb 2009

Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeis guineensis: evidence for conserved gene functions in early development

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

With the aim of understanding the molecular mechanisms underlying somatic embryogenesis (SE) in oil palm, we examined transcriptome changes that occur when embryogenic suspension cells are initiated to develop somatic embryos. Two reciprocal suppression subtractive hybridization (SSH) libraries were constructed from oil palm embryogenic cell suspensions: one in which embryo development was blocked by the presence of the synthetic auxin analogue 2,4-dichlorophenoxyacetic acid (2,4-d) in the medium (proliferation library); and another in which cells were stimulated to form embryos by the removal of 2,4-d from the medium (initiation library). A total of 1867 Expressed Sequence Tags (ESTs) consisting of 1567 potential unigenes were assembled from the two libraries. Functional annotation indicated that 928 of the ESTs correspond to proteins that have either no similarity to sequences in public databases or are of unknown function. Gene Ontology (GO) terms assigned to the two EST populations give clues to the underlying molecular functions, biological processes and cellular components involved in the initiation of embryo development. Macroarrays were used for transcript profiling the ESTs during SE. Hierarchical cluster analysis of differential transcript accumulation revealed 4 distinct profiles containing a total of 192 statistically significant developmentally regulated transcripts. Similarities and differences between the global results obtained with in vitro systems from dicots, monocots and gymnosperms will be discussed.

Hsiang-Chun Lin and Fabienne Morcillo contributed equally to this work and a portion was originally presented at the 2006 Congress of the Federation of European Societies of Plant Biology Lyon, France.