Skip to main content

Advertisement

Log in

The RNA-binding proteins CSP41a and CSP41b may regulate transcription and translation of chloroplast-encoded RNAs in Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The chloroplast protein CSP41a both binds and cleaves RNA, particularly in stem-loops, and has been found associated with ribosomes. A related protein, CSP41b, co-purifies with CSP41a, ribosomes, and the plastid-encoded RNA polymerase. Here we show that Arabidopsis CSP41a and CSP41b interact in vivo, and that a csp41b null mutant becomes depleted of CSP41a in mature leaves, correlating with a pale green phenotype and reduced accumulation of the ATP synthase and cytochrome b 6 /f complexes. RNA gel blot analyses revealed up to four-fold decreases in accumulation for some chloroplast RNAs, which run-on experiments suggested could tentatively be ascribed to decreased transcription. Depletion of both CSP41a and CSP41b triggered a promoter switch whereby atpBE became predominately transcribed from its nucleus-encoded polymerase promoter as opposed to its plastid-encoded polymerase promoter. Together with published proteomic data, this suggests that CSP41a and/or CSP41b enhances transcription by the plastid-encoded polymerase. Gradient analysis of rRNAs in the mutant suggest a defect in polysome assembly or stability, suggesting that CSP41a and/or CSP41b, which are not present in polysomal fractions, stabilize ribosome assembly intermediates. Although psbA and rbcL mRNAs are normally polysome-associated in the mutant, petD-containing RNAs have diminished association, perhaps accounting for reduced accumulation of its respective multimeric complex. In conclusion, our data suggest that CSP41a and CSP41b stimulate both transcription and translation in the chloroplast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allison LA (2000) The role of sigma factors in plastid transcription. Biochimie 82:537–548. doi:10.1016/S0300-9084(00)00611-8

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657. doi:10.1126/science.1086391

    Article  PubMed  Google Scholar 

  • Barkan A (1993) Nuclear mutants of maize with defects in chloroplast polysome assembly have altered chloroplast RNA metabolism. Plant Cell 5:389–402

    Article  PubMed  CAS  Google Scholar 

  • Barkan A (1998) Approaches to investigating nuclear genes that function in chloroplast biogenesis in land plants. Methods Enzymol 297:38–57. doi:10.1016/S0076-6879(98)97006-9

    Article  CAS  Google Scholar 

  • Baumgartner BJ, Rapp JC, Mullet JE (1993) Plastid genes encoding the transcription-translation apparatus are differentially transcribed early in barley (Hordeum vulgare) chloroplast development: evidence for selective stabilization of psbA mRNA. Plant Physiol 101:781–791

    PubMed  CAS  Google Scholar 

  • Beligni MV, Mayfield SP (2008) Arabidopsis thaliana mutants reveal a role for CSP41a and CSP41b two ribosome-associated endonucleases in chloroplast ribosomal RNA metabolism. Plant Mol Biol 67:389–401

    Google Scholar 

  • Bollenbach TJ, Stern DB (2003a) Divalent metal-dependent catalysis and cleavage specificity of CSP41, a chloroplast endoribonuclease belonging to the short chain dehydrogenase/reductase superfamily. Nucleic Acids Res 31:4317–4325. doi:10.1093/nar/gkg640

    Article  PubMed  CAS  Google Scholar 

  • Bollenbach TJ, Stern DB (2003b) Secondary structures common to chloroplast mRNA 3′-untranslated regions direct cleavage by CSP41, an endoribonuclease belonging to the short chain dehydrogenase/reductase superfamily. J Biol Chem 278:25832–25838. doi:10.1074/jbc.M303559200

    Article  PubMed  CAS  Google Scholar 

  • Bollenbach TJ, Tatman DA, Stern DB (2003) CSP41a, a multifunctional RNA-binding protein, initiates mRNA turnover in tobacco chloroplasts. Plant J 36:842–852. doi:10.1046/j.1365-313X.2003.01935.x

    Article  PubMed  CAS  Google Scholar 

  • Bollenbach TJ, Lange H, Gutierrez R, Erhardt M, Stern DB, Gagliardi D (2005) RNR1, a 3′–5′ exoribonuclease belonging to the RNR superfamily, catalyzes 3′ maturation of chloroplast ribosomal RNAs in Arabidopsis thaliana. Nucleic Acids Res 33:2751–2763. doi:10.1093/nar/gki576

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  PubMed  CAS  Google Scholar 

  • Dohme F, Nierhaus KH (1976) Role of 5S RNA in assembly and function of the 50S subunit from Escherichia coli. Proc Natl Acad Sci USA 73:2221–2225. doi:10.1073/pnas.73.7.2221

    Article  PubMed  CAS  Google Scholar 

  • Fish RN, Kane CM (2002) Promoting elongation with transcript cleavage stimulatory factors. Biochim Biophys Acta 1577:287–307

    PubMed  CAS  Google Scholar 

  • Gatenby AA, Rothstein SJ, Nomura M (1989) Translational coupling of the maize chloroplast atpB and atpE genes. Proc Natl Acad Sci USA 86:4066–4070. doi:10.1073/pnas.86.11.4066

    Article  PubMed  CAS  Google Scholar 

  • Green R, Noller HF (1999) Reconstitution of functional 50S ribosomes from in vitro transcripts of Bacillus stearothermophilus 23S rRNA. Biochemistry 38:1772–1779. doi:10.1021/bi982246a

    Article  PubMed  CAS  Google Scholar 

  • Hassidim M, Yakir E, Fradkin D, Hilman D, Kron I, Keren N, Harir Y, Yerushalmi S, Green RM (2007) Mutations in CHLOROPLAST RNA BINDING provide evidence for the involvement of the chloroplast in the regulation of the circadian clock in Arabidopsis. Plant J 51:551–562. doi:10.1111/j.1365-313X.2007.03160.x

    Article  PubMed  CAS  Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832. doi:10.1023/A:1006496308160

    Article  PubMed  CAS  Google Scholar 

  • Horlitz M, Klaff P (2000) Gene-specific trans-regulatory functions of magnesium for chloroplast mRNA stability in higher plants. J Biol Chem 275:35638–35645. doi:10.1074/jbc.M005622200

    Article  PubMed  CAS  Google Scholar 

  • Kettunen R, Pursiheimo S, Rintamaki E, Van Wijk KJ, Aro EM (1997) Transcriptional and translational adjustments of psbA gene expression in mature chloroplasts during photoinhibition and subsequent repair of photosystem II. Eur J Biochem 247:441–448. doi:10.1111/j.1432-1033.1997.00441.x

    Article  PubMed  CAS  Google Scholar 

  • Khaitovich P, Tenson T, Kloss P, Mankin AS (1999) Reconstitution of functionally active Thermus aquaticus large ribosomal subunits with in vitro-transcribed rRNA. Biochemistry 38:1780–1788. doi:10.1021/bi9822473

    Article  PubMed  CAS  Google Scholar 

  • Klaff P, Gruissem W (1991) Changes in chloroplast mRNA stability during leaf development. Plant Cell 3:517–530

    Article  PubMed  CAS  Google Scholar 

  • Loschelder H, Schweer J, Link B, Link G (2006) Dual temporal role of plastid Sigma Factor 6 in Arabidopsis development. Plant Physiol 142:642–650

    Google Scholar 

  • Monde RA, Greene JC, Stern DB (2000a) Disruption of the petB-petD intergenic region in tobacco chloroplasts affects petD RNA accumulation and translation. Mol Gen Genet 263:610–618. doi:10.1007/s004380051208

    Article  PubMed  CAS  Google Scholar 

  • Monde RA, Zito F, Olive J, Wollman FA, Stern DB (2000b) Post-transcriptional defects in tobacco chloroplast mutants lacking the cytochrome b6/f complex. Plant J 21:61–72. doi:10.1046/j.1365-313x.2000.00653.x

    Article  PubMed  CAS  Google Scholar 

  • Mullet JE, Klein RR (1987) Transcription and RNA stability are important determinants of higher plant chloroplast RNA levels. EMBO J 6:1571–1579

    PubMed  CAS  Google Scholar 

  • Nakamura T, Ohta M, Sugiura M, Sugita M (2001) Chloroplast ribonucleoproteins function as a stabilizing factor of ribosome-free mRNAs in the stroma. J Biol Chem 276:147–152. doi:10.1074/jbc.M008817200

    Article  PubMed  CAS  Google Scholar 

  • Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol Cell Proteomics 5:114–133. doi:10.1074/mcp.M500180-MCP200

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Ogrzewalla K, Baginsky S, Sickmann A, Meyer HE, Link G (2000) The multisubunit chloroplast RNA polymerase A from mustard (Sinapis alba L.). Integration of a prokaryotic core into a larger complex with organelle-specific functions. Eur J Biochem 267:253–261. doi:10.1046/j.1432-1327.2000.00991.x

    Article  PubMed  CAS  Google Scholar 

  • Raab S, Toth Z, de Groot C, Stamminger T, Hoth S (2006) ABA-responsive RNA-binding proteins are involved in chloroplast and stromule function in Arabidopsis seedlings. Planta: 224:900–914. doi:10.1007/s00425-006-0282-4

  • Schweer J, Loschelder H, Link G (2006) A promoter switch that can rescue a plant sigma factor mutant. FEBS Lett 580:6617–6622. doi:10.1016/j.febslet.2006.11.010

    Article  PubMed  CAS  Google Scholar 

  • Spierer P, Zimmermann RA (1978) Stoichiometry, cooperativity, and stability of interactions between 5S RNA and proteins L5, L18, and L25 from the 50S ribosomal subunit of Escherichia coli. Biochemistry 17:2474–2479. doi:10.1021/bi00606a002

    Article  PubMed  CAS  Google Scholar 

  • Spierer P, Bogdanov AA, Zimmermann RA (1978) Parameters for the interaction of ribosomal proteins L5, L18, and L25 with 5S RNA from Escherichia coli. Biochemistry 17:5394–5398. doi:10.1021/bi00618a012

    Article  PubMed  CAS  Google Scholar 

  • Suzuki JY, Ytterberg AJ, Beardslee TA, Allison LA, Wijk KJ, Maliga P (2004) Affinity purification of the tobacco plastid RNA polymerase and in vitro reconstitution of the holoenzyme. Plant J 40:164–172. doi:10.1111/j.1365-313X.2004.02195.x

    Article  PubMed  CAS  Google Scholar 

  • Swiatecka-Hagenbruch M, Liere K, Borner T (2007) High diversity of plastidial promoters in Arabidopsis thaliana. Mol Genet Genomics 277:725–734. doi:10.1007/s00438-007-0222-4

    Article  PubMed  CAS  Google Scholar 

  • Vian A, Henry-Vian C, Davies E (1999) Rapid and systemic accumulation of chloroplast mRNA-binding protein transcripts after flame stimulus in tomato. Plant Physiol 121:517–524. doi:10.1104/pp.121.2.517

    Article  PubMed  CAS  Google Scholar 

  • Wind M, Reines D (2000) Transcription elongation factor SII. Bioessays 22:327–336. doi:10.1002/(SICI)1521-1878(200004)22:4<327::AID-BIES3>3.0.CO;2-4

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Beligni MV, Prieto S, Haynes PA, McDonald WH, Yates JR III, Mayfield SP (2003) Proteomic characterization of the Chlamydomonas reinhardtii chloroplast ribosome. Identification of proteins unique to the 70S ribosome. J Biol Chem 278:33774–33785. doi:10.1074/jbc.M301934200

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Stern DB (1997) The spinach chloroplast endoribonuclease CSP41 cleaves the 3′ untranslated region of petD mRNA primarily within its terminal stem-loop structure. J Biol Chem 272:12784–12880

    Google Scholar 

  • Yang J, Schuster G, Stern DB (1996) CSP41, a sequence-specific chloroplast mRNA binding protein, is an endoribonuclease. Plant Cell 8:1409–1420

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Maureen Hanson’s lab for RpoB antiserum, and the Salk Institute Genomic Analysis Laboratory for T-DNA lines. We also thank Harsh Parikh, a Univ. Waterloo intern, for assistance. This work was supported by DOE Energy Biosciences Program award DE-FG02-90ER20015 to D.B.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Stern.

Additional information

Arabidopsis seed stocks: SALK_107566 (csp41b-1) and SALK_021748 (csp41b-2).

Electronic supplementary material

Below is the link to the electronic supplementary material.

[INSERT CAPTION HERE] (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bollenbach, T.J., Sharwood, R.E., Gutierrez, R. et al. The RNA-binding proteins CSP41a and CSP41b may regulate transcription and translation of chloroplast-encoded RNAs in Arabidopsis. Plant Mol Biol 69, 541–552 (2009). https://doi.org/10.1007/s11103-008-9436-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9436-z

Keywords

Navigation