Skip to main content
Log in

Changes in photosynthesis, pigment composition and glutathione contents in two Antarctic lichens during a light stress and recovery

  • Original Papers
  • Published:
Photosynthetica

Abstract

Over last decades, several studies have been focused on short-term high light stress in lichens under laboratory conditions. Such studies reported a strong photoinhibition of photosynthesis accompanied by a partial photodestruction of PSII, involvement of photoprotective mechanisms, and resynthetic processes into gradual recovery. In our paper, we applied medium [800 μmol(photon) m−2 s−1] light stress to induce negative changes in PSII funcioning as well as pigment and glutathione (GSH) content in two Antarctic fruticose lichen species. Chlorophyll (Chl) fluorescence parameters, such as potential and effective quantum yield of photosynthetic processes and fast transients (OJIP) recorded during high light exposition and recovery, revealed that Usnea antarctica was less susceptible to photoinhibition than U. aurantiaco-atra. This might be supported by a more pronounced high light-induced reduction in Chl a and b contents in U. aurantiaco-atra compared with U. antarctica. In both experimental species, total GSH showed an initial increase during the first 30–40 min of high light treatment followed by a decrease (60 min) and an increase during dark recovery. Full GSH recovery, however, was not finished in U. aurantiaco-atra even after 5 h indicating lower capacity of photoprotective mechanisms in the species. OJIP curves showed high light-induced decrease in both species, however, the recovery of the OJIPs shape to pre-photoinhibitory values was faster and more apparent in U. antarctica than in U. aurantiaco-atra. The results are discussed in terms of sensitivity of the two species to photoinhibition and their photosynthetic performance in natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABS/RC:

absorption of light energy per reaction centre

DM:

dry mass

ETo/RC:

photosynthetic electron transport rate per reaction centre

Chl:

chlorophyll

Fv/Fm :

potential quantum yield of PSII

GSH:

glutathione

GSSG:

glutathione, oxidized form

OJIP:

fast chlorophyll fluorescence transients

PI Abs:

performance index

ROS:

reactive oxygen species

TRo/RC:

trapping rate per reaction centre

ΦPSII :

effective quantum yield of PSII

References

  • Barták, M.: Lichen photosynthesis. Scaling from the cellular to the organism level. — In: Hohmann-Marriott, M. (ed.): The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration. Pp. 379–400. Springer, Dordrecht 2014.

    Chapter  Google Scholar 

  • Barták, M., Solhaug, K.-A., Vráblíková, H., Gauslaa, Y.: Curling during desiccation protects the foliose lichen Lobaria pulmonaria against photoinhibition. — Oecologia 149: 553–560, 2006.

    Article  PubMed  Google Scholar 

  • Barták, M., Hájek, J., Očenášová, P.: Photoinhibition of photosynthesis in Antarctic lichen Usnea antarctica. I. Light intensity- and light duration-dependent changes in functioning of photosystem II. — Czech Polar Reports 2: 42–51, 2011.

    Article  Google Scholar 

  • Barták, M., Hájek, J., Vráblíková, H. et al.: High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione. — Plant Biol. 6: 333–341, 2004.

    Article  PubMed  Google Scholar 

  • Barták, M., Vráblíková, H., Hájek, J.: Sensitivity of photosystem 2 of Antarctic lichens to high irradiance stress: Fluorometric study of fruticose (Usnea antarctica) and foliose (Umbilicaria decussata) species. — Photosynthetica 41: 497–504 2003.

    Article  Google Scholar 

  • Barták, M., Vráblíková-Cempírková, H., Štepigová, J. et al.: Duration of irradiation rather than quantity and frequency of high irradiance inhibits photosynthetic processes in the lichen Lasallia pustulata. — Photosynthetica 46: 161–169, 2008.

    Article  Google Scholar 

  • Bilger, W., Rimke, S., Schreiber, U. et al.: Inhibition of energytransfer to photosystem II in lichens by dehydration. — J. Plant Physiol. 134: 261–268, 1989.

    Article  CAS  Google Scholar 

  • Bjerke, J.W., Joly, D., Nilsen, L. et al.: Spatial trends in usnic acid concentrations of the lichen Flavocetraria nivalis along local climatic gradients in the Arctic (Kongsfjorden, Svalbard). — Polar Biol. 27: 409–417, 2004.

    Article  Google Scholar 

  • Bohuslavová, O.: Ecology of lichens on deglaciated parts of James Ross Island, the Antarctic. Ph.D. Thesis. Pp. 1–73. Masaryk University, Brno 2012.

    Google Scholar 

  • Burrit, D.J., MacKenzie, S.: Antioxidant metabolism during acclimation of Begonia × erythrophylla to high light levels. — Ann. Bot. 91: 783–794, 2003.

    Article  Google Scholar 

  • Carreras, H.A., Wannaz, E.D., Perez, C.A. et al.: The role of urban air pollutants on the performance of heavy metal accumulation in Usnea amblyoclada. — Environ. Pollut. 97: 50–57, 2005.

    CAS  Google Scholar 

  • Colville, L., Kranner, I.: Desiccation tolerant plants as model systems to study redox regulation of protein thiols. — Plant Growth Regul. 62: 241–255, 2010.

    Article  CAS  Google Scholar 

  • Davies, B.J., Glasser, N.F., Carrivick, J.L. et al.: Landscape evolution and ice-sheet behaviour in a semi-arid polar environment: James Ross Island, NE Antarctic Peninsula. — In: Hambrey, M.H., Barker, P.F., Barrett, P.J. et al. (ed.): Antarctic Palaeoenvironments and Earth-Surface Processes. Pp. 353–395. Geological Society, London 2013.

    Google Scholar 

  • Del Hoyo, A., Álvarez, R., Del Campo, E.M. et al.: Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. — Ann. Bot. 107: 109–118, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  • Demmig-Adams, B., Maguas, C., Adams, W.W. et al.: Effect of high light on the efficiency of photochemical energyconversion in a variety of lichen species with green and bluegreen phycobionts. — Planta 180: 400–409, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Hauck, M., Dulamsuren, C., Mühlenberg, M.: Lichen diversity on steppe slopes in the northern Mongolian mountain taiga and its dependence on microclimate. — Flora 202: 530–546, 2007.

    Article  Google Scholar 

  • Heber, U., Azarkovich, M., Shuvalov, V.: Activation of mechanisms of photoprotection by desiccation and by light: poikilohydric photoautotrophs. — J. Exp. Bot. 58: 2745–2759, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Holm, G.: Chlorophyll mutations in barley. — Acta Agr. Scand. 4: 457–471, 1954.

  • Huneck, S.: Progress in the chemistry of lichen substances, 2000–2005. — J. Hattori Bot. Lab. 100: 671–694, 2006.

    Google Scholar 

  • Kappen L., Breuer M., Bölter M.: Ecological and physiological investigations in continental antarctic cryptogams. 3. Photosynthetic production of Usnea sphacelata: diurnal courses, models, and the effect of photoinhibition. — Polar Biol. 11: 393–402, 1991.

    Article  Google Scholar 

  • Košler, J., Magna, T., Mlčoch, B. et al.: Combined Sr, Nd, Pb, and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation. — Chem. Geol. 258: 207–218, 2009.

    Article  Google Scholar 

  • Krábková, G.: [Content of UV-absorbing compounds and pigments in extracts from lichens from different Earth regions.] Pp. 1–67. Diploma Thesis. Masaryk University, Brno 2013. [In Czech]

    Google Scholar 

  • Kranner, I.: Determination of glutathione, glutathione disulphide and two related enzymes, glutathione reductase and glucose-6-phosphate dehydrogenase, in fungal and plant cells. — In: Varma, A. (ed.): Mycorrhiza Manual. Pp. 227–241. Springer, Berlin 1998.

    Chapter  Google Scholar 

  • Kranner, I.: Glutathione status correlates with different degrees of desiccation tolerance in three lichens. — New Phytol. 154: 451–460, 2002.

    Article  CAS  Google Scholar 

  • Kranner, I., Birtić, S.: A modulating role for antioxidants in desiccation tolerance. — Integr. Comp. Biol. 45: 734–740, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Kranner, I., Cram, W.J., Zorn, M. et al.: Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. — P. Natl. Acad. Sci. USA 102: 3141–3146, 2005.

    Article  CAS  Google Scholar 

  • Láska, K., Barták, M., Hájek, J. et al.: Climatic and ecological characteristics of deglaciated area of James Ross Island, Antarctica, with a special respect to vegetation cover. — Czech Polar Reports 1: 49–62, 2011.

    Article  Google Scholar 

  • Manrique, E., Balaguer, L., Barnes, J. et al.: Photoinhibition studies in lichens using chlorophyll fluorescence analysis. — Bryologist 96: 443–449, 1993.

    Article  CAS  Google Scholar 

  • May, M.J., Vernoux, T., Leaver, C. et al.: Glutathione homeostasis in plants: implications for environmental sensing and plant development. — J. Exp. Bot. 49: 649–667, 1998.

    CAS  Google Scholar 

  • Mrak, T., Jeran, Z., Batič, F. et al.: Arsenic accumulation and thiol status in lichens exposed to As(V) in controlled conditions. — Biometals 23: 207–219, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Müller, M., Zechmann, B., Zellnig, G.: Ultrastructural localization of glutathione in Cucurbita pepo plants. — Protoplasma 223: 213–219, 2004.

    Article  PubMed  Google Scholar 

  • Noctor, G., Foyer, C.H.: Ascorbate and glutathione: Keeping active oxygen under control. — Annu. Rev. Plant Phys. 49: 249–279, 1998.

    Article  CAS  Google Scholar 

  • Noctor, G., Gomez, L., Vanacker, H. et al.: Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. — J. Exp. Bot. 53: 1283–1304, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Onofri, S., Fenice, M., Cicalini, A.R. et al.: Ecology and biology of microfungi from Antarctic rocks and soils. — Ital. J. Zool. 67: 163–167, 2000.

    Article  Google Scholar 

  • Palmqvist, K., Dahlman, L., Valladares, F. et al.: CO2 exchange and thallus nitrogen across 75 contrasting lichen associations from different climate zones. — Oecologia 133: 295–306, 2002.

    Article  Google Scholar 

  • Rausch, T., Wachter, A.: Sulfur metabolism: a versatile platform for launching defence operations. — Trends Plant Sci. 10: 503–509, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Riddell, J., Padgett, P.E., Nash III, T.H.: Physiological responses of lichens to factorial fumigations with nitric acid and ozone. — Environ. Pollut. 170: 202–210, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Rikkinen, J.: What’s Behind the Pretty Colours. A Study on the Photobiology of Lichens. Edition 4: Bryobrothera. Pp. 239, The Finnish Bryological Society, Helsinki 1995.

    Google Scholar 

  • Singh, J., Dubey, A.K., Singh, R.P.: Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations. — Rev. Environ. Sci. Biotechnol. 10: 63–77, 2011.

    Article  Google Scholar 

  • Singh, R., Ranjan, S., Nayaka, S. et al.: Functional characteristics of a fruticose type of lichen, Stereocaulon foliolosum Nyl., in response to light and water stress. — Acta Physiol. Plant. 35: 1605–1615, 2013.

    Article  CAS  Google Scholar 

  • Smellie, J.L., Johnson, J.S., McIntosh, W.C. et al.: Six million years of glacial history recorded in volcanic lithofacies of the James Ross Island Volcanic Group, Antarctic Peninsula. — Palaeogeogr. Palaeoclimatol. Palaeoecol. 260: 122–148, 2008.

    Article  Google Scholar 

  • Štepigová, J., Vráblíková, H., Lang, J. et al.: Glutathione and zeaxanthin formation during high light stress in foliose lichens. — Plant Soil Environ. 53: 340–344, 2007.

    Google Scholar 

  • Stirbet, A.: Excitonic connectivity between photosystem II units: what is it, and how to measure it? — Photosynth. Res. 116: 189–214, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Strasser, R.J., Shrivastava, A., Tsimilli-Michael, M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. — In: Yunus, M., Pathre, U., Mohanty, P. (ed): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445–483. Taylor and Francis, London 2000.

    Google Scholar 

  • Szalai, G., Kellös, T., Galiba, G. et al.: Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. — Plant Growth Regul. 28: 66–80, 2009.

    Article  CAS  Google Scholar 

  • Tausz, M.: The role of glutathione in plant response and adaptation to natural stress. — In: Grill, D., Tausz, M., De Kok, L.J.: Significance of Glutathione to Plant Adaptation to the Environment. Pp. 101–122. Springer, Dordrecht 2001.

    Chapter  Google Scholar 

  • Terauds, A., Chown, S.L., Morgan, F. et al.: Conservation biogeography of the Antarctic. — Diversity Distrib. 18: 726–741, 2012.

    Article  Google Scholar 

  • Tretiach, M., Baruffo, L., Piccotto, M.: Effects of Mediterranean summer conditions on chlorophyll a fluorescence emission in the epiphytic lichen Flavoparmelia soredians: a field study. — Plant Biosyst. 146: 171–180, 2012.

    Article  Google Scholar 

  • Veerman, J., Vasil’ev, S., Paton, G.D. et al.: Photoprotection in the lichen Parmelia sulcata: The origins of desiccation-induced fluorescence quenching. — Plant Physiol. 145: 997–1005, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vráblíková, H., Barták, M., Wönisch, A.: Changes in glutathione and xanthophyll cycle pigments in the high light-stressed lichens Umbilicaria antarctica and Lassalia pustulata. — J. Photoch. Photobiol. B 79: 35–41, 2005.

    Article  Google Scholar 

  • Wendler, J., Holzwarth, A.R.: State transitions in the green alga Scenedesmus obliquus probed by time-resolved chlorophyll fluorescence spectroscopy and global data analysis. — Biophys. J. 52: 717–728, 1987.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Barták.

Additional information

Acknowledgements: The authors thank the infrastructure of the CzechPolar project for providing field and laboratory facilities that enabled this study. The authors are grateful to Peter Vaczi for his help with statistical analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balarinová, K., Barták, M., Hazdrová, J. et al. Changes in photosynthesis, pigment composition and glutathione contents in two Antarctic lichens during a light stress and recovery. Photosynthetica 52, 538–547 (2014). https://doi.org/10.1007/s11099-014-0060-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-014-0060-7

Additional key words

Navigation