Skip to main content

Advertisement

Log in

Modeling and Prediction of Solvent Effect on Human Skin Permeability using Support Vector Regression and Random Forest

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The solvent effect on skin permeability is important for assessing the effectiveness and toxicological risk of new dermatological formulations in pharmaceuticals and cosmetics development. The solvent effect occurs by diverse mechanisms, which could be elucidated by efficient and reliable prediction models. However, such prediction models have been hampered by the small variety of permeants and mixture components archived in databases and by low predictive performance. Here, we propose a solution to both problems.

Methods

We first compiled a novel large database of 412 samples from 261 structurally diverse permeants and 31 solvents reported in the literature. The data were carefully screened to ensure their collection under consistent experimental conditions. To construct a high-performance predictive model, we then applied support vector regression (SVR) and random forest (RF) with greedy stepwise descriptor selection to our database. The models were internally and externally validated.

Results

The SVR achieved higher performance statistics than RF. The (externally validated) determination coefficient, root mean square error, and mean absolute error of SVR were 0.899, 0.351, and 0.268, respectively. Moreover, because all descriptors are fully computational, our method can predict as-yet unsynthesized compounds.

Conclusion

Our high-performance prediction model offers an attractive alternative to permeability experiments for pharmaceutical and cosmetic candidate screening and optimizing skin-permeable topical formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALOGP:

Ghose–Crippen octanol–water partition coefficient

ANN:

Artificial neural network

C d :

Chemical concentration in dose formulation

J ss :

Steady state flux of the solute

k p :

Permeability coefficient

log P:

Octanol–water partition coefficient

MAE:

Mean absolute error

MW:

Molecular weight

PCA:

Principal component analysis

QSPR:

Quantitative structure–property relationship

r 2 :

Determination coefficient

RF:

Random forest

RMSE:

Root mean square error

SVR:

Support vector regression

References

  1. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  2. Bartek MJ, LaBudde JA, Maibach HI. Skin permeability in vivo: comparison in rat, rabbit, pig and man. J Invest Dermatol. 1972;58(3):114–23.

    Article  CAS  PubMed  Google Scholar 

  3. Franz TJ. Percutaneous absorption on the relevance of in vitro data. J Invest Dermatol. 1975;64(3):190–5.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Q, Grice JE, Li P, Jepps OG, Wang GJ, Roberts MS. Skin solubility determines maximum transepidermal flux for similar size molecules. Pharm Res. 2009;26(8):1974–85.

    Article  CAS  PubMed  Google Scholar 

  5. Takeuchi H, Ishida M, Furuya A, Todo H, Urano H, Sugibayashi K. Influence of skin thickness on the in vitro permeabilities of drugs through Sprague–Dawley rat or Yucatan micropig skin. Biol Pharm Bull. 2012;35(2):192–202.

    Article  CAS  PubMed  Google Scholar 

  6. Karadzovska D, Riviere JE. Assessing vehicle effects on skin absorption using artificial membrane assays. Eur J Pharm Sci. 2013;50(5):569–76.

    Article  CAS  PubMed  Google Scholar 

  7. Chauhan P, Shakya M. Role of physicochemical properties in the estimation of skin permeability: in vitro data assessment by partial least-squares regression. SAR QSAR Environ Res. 2010;21(5–6):481–94.

    Article  CAS  PubMed  Google Scholar 

  8. Abraham MH, Martins F. Human skin permeation and partition: general linear free-energy relationship analyses. J Pharm Sci. 2004;93(6):1508–23.

    Article  CAS  PubMed  Google Scholar 

  9. Buchwald P, Bodor N. A simple, predictive, structure-based skin permeability model. J Pharm Pharmacol. 2001;53(8):1087–98.

    Article  CAS  PubMed  Google Scholar 

  10. Cronin MT, Dearden JC, Moss GP, Murray-Dickson G. Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships. Eur J Pharm Sci. 1999;7(4):325–30.

    Article  CAS  PubMed  Google Scholar 

  11. Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9(5):663–9.

    Article  CAS  PubMed  Google Scholar 

  12. Baba H, Takahara JI, Mamitsuka H. In silico predictions of human skin permeability using nonlinear quantitative structure–property relationship models. Pharm Res. 2015. doi:10.1007/s11095-015-1629-y.

    Google Scholar 

  13. Khajeh A, Modarress H. Linear and nonlinear quantitative structure–property relationship modelling of skin permeability. SAR QSAR Environ Res. 2014;25(1):35–50.

    Article  CAS  PubMed  Google Scholar 

  14. Neely BJ, Madihally SV, Robinson Jr RL, Gasem KA. Nonlinear quantitative structure–property relationship modeling of skin permeation coefficient. J Pharm Sci. 2009;98(11):4069–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Baert B, Deconinck E, Van Gele M, Slodicka M, Stoppie P, Bodé S, et al. Transdermal penetration behaviour of drugs: CART-clustering, QSPR and selection of model compounds. Bioorg Med Chem. 2007;15(22):6943–55.

    Article  CAS  PubMed  Google Scholar 

  16. Katritzky AR, Dobchev DA, Fara DC, Hür E, Tämm K, Kurunczi L, et al. Skin permeation rate as a function of chemical structure. J Med Chem. 2006;49(11):3305–14.

    Article  CAS  PubMed  Google Scholar 

  17. Neumann D, Kohlbacher O, Merkwirth C, Lengauer T. A fully computational model for predicting percutaneous drug absorption. J Chem Inf Model. 2006;46(1):424–9.

    Article  CAS  PubMed  Google Scholar 

  18. Lim CW, Fujiwara S, Yamashita F, Hashida M. Prediction of human skin permeability using a combination of molecular orbital calculations and artificial neural network. Biol Pharm Bull. 2002;25(3):361–6.

    Article  CAS  PubMed  Google Scholar 

  19. Smith EW, Maibach HI, editors. Percutaneous penetration enhancers, second ed. New York: CRC Press; 2005.

    Google Scholar 

  20. Barry BW. Breaching the skin’s barrier to drugs. Nat Biotechnol. 2004;22(2):165–7.

    Article  CAS  PubMed  Google Scholar 

  21. Lane ME. Skin penetration enhancers. Int J Pharm. 2013;447(1–2):12–21.

    Article  CAS  PubMed  Google Scholar 

  22. Watkinson RM, Guy RH, Hadgraft J, Lane ME. Optimisation of cosolvent concentration for topical drug delivery - II: influence of propylene glycol on ibuprofen permeation. Skin Pharmacol Physiol. 2009;22(4):225–30.

    Article  CAS  PubMed  Google Scholar 

  23. Roy SD, Manoukian E. Transdermal delivery of ketorolac tromethamine: permeation enhancement, device design, and pharmacokinetics in healthy humans. J Pharm Sci. 1995;84(10):1190–6.

    Article  CAS  PubMed  Google Scholar 

  24. Sathyan G, Ritschel WA, Hussain AS. Transdermal delivery of tacrine: I: Identification of a suitable delivery vehicle. Int J Pharm. 1995;114(1):75–83.

    Article  CAS  Google Scholar 

  25. Goldberg-Cettina M, Liu P, Nightingale J, Kurihara-Bergstrom T. Enhanced transdermal delivery of estradiol in vitro using binary vehicles of isopropyl myristate and short-chain alkanols. Int J Pharm. 1995;114(2):237–45.

    Article  CAS  Google Scholar 

  26. Pardo A, Shiri Y, Cohen S. Percutaneous absorption of physostigmine: optimization of delivery from a binary solvent by thermodynamic control. J Pharm Sci. 1990;79(7):573–8.

    Article  CAS  PubMed  Google Scholar 

  27. Riviere JE, Brooks JD. Prediction of dermal absorption from complex chemical mixtures: incorporation of vehicle effects and interactions into a QSPR framework. SAR QSAR Environ Res. 2007;18(1–2):31–44.

    Article  CAS  PubMed  Google Scholar 

  28. Riviere JE, Brooks JD. Predicting skin permeability from complex chemical mixtures: dependency of quantitative structure permeation relationships on biology of skin model used. Toxicol Sci. 2011;119(1):224–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ghafourian T, Samaras EG, Brooks JD, Riviere JE. Modelling the effect of mixture components on permeation through skin. Int J Pharm. 2010;398(1–2):28–32.

    Article  CAS  PubMed  Google Scholar 

  30. Ghafourian T, Samaras EG, Brooks JD, Riviere JE. Validated models for predicting skin penetration from different vehicles. Eur J Pharm Sci. 2010;41(5):612–6.

    Article  CAS  PubMed  Google Scholar 

  31. Netzeva TI, Worth A, Aldenberg T, Benigni R, Cronin MT, Gramatica P, et al. Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52. Altern Lab Anim. 2005;33(2):155–73.

    CAS  PubMed  Google Scholar 

  32. Moss GP, Sun Y, Prapopoulou M, Davey N, Adams R, Pugh WJ, et al. The application of Gaussian processes in the prediction of percutaneous absorption. J Pharm Pharmacol. 2009;61(9):1147–53.

    Article  CAS  PubMed  Google Scholar 

  33. Patel J. Science of the science, drug discovery and artificial neural networks. Curr Drug Discov Technol. 2013;10(1):2–7.

    CAS  PubMed  Google Scholar 

  34. Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat Comput. 2004;14(3):199–222.

    Article  Google Scholar 

  35. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

    Article  Google Scholar 

  36. Monte-Moreno E. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques. Artif Intell Med. 2011;53(2):127–38.

    Article  PubMed  Google Scholar 

  37. Yap CW, Li ZR, Chen YZ. Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods. J Mol Graph Model. 2006;24(5):383–95.

    Article  CAS  PubMed  Google Scholar 

  38. El-Sebakhy EA. Forecasting PVT properties of crude oil systems based on support vector machines modeling scheme. J Petrol Sci Eng. 2009;64(1–4):25–34.

    Article  CAS  Google Scholar 

  39. Bharathidason S, Venkataeswaran CJ. Improving classification accuracy based on random forest model with uncorrelated high performing trees. Int J Comput Appl. 2014;101(13):26–30.

    Google Scholar 

  40. Blank IH, McAuliffe DJ. Penetration of benzene through human skin. J Investig Dermatol. 1985;85(6):522–6.

    Article  CAS  PubMed  Google Scholar 

  41. Burkert U, Norman LA. Molecular mechanics, ACS monograph 177. Washington, DC: American Chemical Society; 1982.

    Google Scholar 

  42. Stewart JJ. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model. 2013;19(1):1–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42:D1091–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. We have obtained structures of 6475 compounds as approved drugs in DrugBank: http://www.drugbank.ca/downloads#structures/.

  45. Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. R package version 1.6-2. 2014. Available from http://CRAN.R-project.org/package=e1071/.

  46. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003;43(6):1947–58.

    Article  CAS  PubMed  Google Scholar 

  47. Liaw A, Wiener M. Classification and regression by random Forest. R News. 2002;2:18–22.

  48. Shao J. Linear model selection by cross-validation. J Am Stat Assoc. 1993;88(442):486–94.

    Article  Google Scholar 

  49. Zhang P. Model selection via multifold cross validation. Ann Stat. 1993;21(1):299–313.

    Article  Google Scholar 

  50. Burman P. A Comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika. 1989;76(3):503–14.

    Article  Google Scholar 

  51. Golbraikh A, Tropsha A. Beware of q2! J Mol Graph Model. 2002;20(4):269–76.

    Article  CAS  PubMed  Google Scholar 

  52. Roy PP, Roy K. On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci. 2008;27(3):302–13.

  53. Consonni V, Ballabio D, Todeschini R. Comments on the definition of the Q2 parameter for QSAR validation. J Chem Inf Model. 2009;49(7):1669–78.

    Article  CAS  PubMed  Google Scholar 

  54. Ojha PK, Mitra I, Das RN, Roy K. Further exploring rm2 metrics for validation of QSPR models. Chemom Intell Lab Syst. 2011;107(1):194–205.

    Article  CAS  Google Scholar 

  55. Chirico N, Gramatica P. Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model. 2011;51(9):2320–35.

  56. Chirico N, Gramatica P. Real external predictivity of QSAR models.Part 2.New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J Chem Inf Model. 2012;52(8):2044–58.

    Article  CAS  PubMed  Google Scholar 

  57. Roy K, Mitra I, Kar S, Ojha PK, Das RN, Kabir H. Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model. 2012;52(2):396–408.

    Article  CAS  PubMed  Google Scholar 

  58. Funar-Timofei S, Iliescu S, Suzuki T. Correlations of limiting oxygen index with structural polyphosphoester features by QSPR approaches. Struct Chem. 2014;25(6):1847–63.

    Article  CAS  Google Scholar 

  59. Fornberg B, Sloan DM. A review of pseudospectral methods for solving partial differential equations. Acta Numer. 1994;3:203–67.

    Article  Google Scholar 

  60. Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165–9.

    Article  CAS  PubMed  Google Scholar 

  61. Yano T, Nakagawa A, Tsuji M, Noda K. Skin permeability of various non-steroidal anti-inflammatory drugs in man. Life Sci. 1986;39(12):1043–50.

    Article  CAS  PubMed  Google Scholar 

  62. Kasting GB, Smith RL, Cooper ER. Effect of lipid solubility and molecular size on percutaneous absorption. In: Shroot B, Schaefer H, editors. Skin pharmacokinetics. Basel: Kargar; 1987. p. 138–53.

    Google Scholar 

  63. Boonen J, Veryser L, Taevernier L, Roche N, Peremans K, Burvenich C, et al. Risk evaluation of impurities in topical excipients: the acetol case. J Pharm Anal. 2014;4(5):303–15.

    Article  CAS  Google Scholar 

  64. Inselberg A. Parallel coordinates: a tool for visualizing multidimensional geometry. New York: Springer; 2009.

    Book  Google Scholar 

  65. Shahlaei M. Descriptor selection methods in quantitative structure-activity relationship studies: a review study. Chem Rev. 2013;113(10):8093–103.

    Article  CAS  PubMed  Google Scholar 

  66. Geinoz S, Guy RH, Testa B, Carrupt PA. Quantitative structure-permeation relationships (QSPeRs) to predict skin permeation: A critical evaluation. Pharm Res. 2004;21(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  67. Michaels AS, Chandrasekaran SK, Shaw JE. Drug permeation through human skin: Theory and invitro experimental measurement. AIChE J. 1975;21(5):985–96.

    Article  CAS  Google Scholar 

  68. Verhaar HJM, van Leeuwen CJ, Hermens JLM. Classifying environmental pollutants 1: Structure-activity relationships for prediction of aquatic toxicity. Chemosphere. 1992;25(4):471–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Baba.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 95.7 KB)

ESM 2

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, H., Takahara, Ji., Yamashita, F. et al. Modeling and Prediction of Solvent Effect on Human Skin Permeability using Support Vector Regression and Random Forest. Pharm Res 32, 3604–3617 (2015). https://doi.org/10.1007/s11095-015-1720-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1720-4

KEY WORDS

Navigation