Skip to main content
Log in

New Techniques to Assess In Vitro Release of siRNA from Nanoscale Polyplexes

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Release of siRNA from nanoscale polyplexes is a crucial yet little investigated process, important during all stages of therapeutic research. Here we develop new methods to characterize polyplex stability early on in the development of new materials.

Methods

We used double fluorescent labeled siRNA to compare binding and stability of a panel of chemically highly diverse nanoscale polyplexes, including peptides, lipids, nanohydrogels, poly-L-lysine brushes, HPMA block copolymers and manganese oxide particles. Conventional EMSA and heparin competition methods were contrasted with a newly developed microscale thermophoresis (MST) assay, a near-equilibrium method that allows free choice of buffer conditions. Integrity of FRET-labeled siRNA was monitored in the presence of nucleases, in cell culture medium and inside living cells. This approach characterizes all relevant steps from polyplex stability, over uptake to in vitro knockdown capability.

Results

Diverging polyplex binding properties revealed drawbacks of conventional EMSA and heparin competition assays, where MST and FRET-based siRNA integrity measurements offered a better discrimination of differential binding strength. Since cell culture medium left siRNA in all polyplexes essentially intact, the relevant degradation events could be pinpointed to occur inside cells. Differential binding strength of the variegated polyplexes correlated only partially with intracellular degradation. The most successful compounds in RNAi showed intermediate binding strength in our assays.

Conclusions

We introduce new methods for the efficient and informative characterization of siRNA polyplexes with special attention to stability. Comparing FRET-labeled siRNA in different polyplexes associates successful knockdown with intermediate siRNA stability in various steps from formulation to intracellular persistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BR50 :

50% binding ratio

cc1 :

Lowest m/m ratio at which complexation exceeds 95%

CLSM:

Confocal laser scanning microscopy

CPP:

Cell penetrating peptide

DAB:

Diaminobutane-dendrimer-(NH2)64

DOTAP:

1,2-dioleoyl-3-trimethylammonium-propane

EMSA:

Electrophoretic mobility shift assay

FACS:

Fluorescence activated cell sorting

FCS:

Fluorescence correlation spectroscopy

FRET:

Förster resonance energy transfer

HPMA:

N-(2-hydroxypropyl) methacrylamide

m/m:

MassParticle/masssiRNA ratio

MnO@SiO2 particle:

Manganese oxide particle covered with silica

MST:

Microscale thermophoresis

PAMAM:

Poly(amido amine)

pDMAEMA:

Poly(2-dimethylamino)ethyl methacrylate

PEI:

Polyethyleneimine

PLL:

Poly-L-lysine

PVA:

Polyvinylalcohol

R/G:

Red/green, ratio of acceptor emission to donor emission

Rh :

Hydrodynamic radius

z Hep/z RNA :

Negative charges of heparin per negative charges of siRNA

References

  1. Diken M, Kreiter S, Selmi A, Britten CM, Huber C, Türeci Ö, et al. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther. 2011;18(7):702–8.

    Article  CAS  PubMed  Google Scholar 

  2. Gooding M, Browne LP, Quinteiro FM, Selwood DL. siRNA delivery: from lipids to cell-penetrating peptides and their mimics. Chem Biol Drug Des. 2012;80(6):787–809.

    Article  CAS  PubMed  Google Scholar 

  3. Gao Y, Liu X-L, Li X-R. Research progress on siRNA delivery with nonviral carriers. Int J Nanomedicine. 2011;6:1017–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Vader P, van der Aa LJ, Engbersen JFJ, Storm G, Schiffelers RM. Physicochemical and biological evaluation of siRNA polyplexes based on PEGylated Poly(amido amine)s. Pharm Res. 2012;29(2):352–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ruponen M, Ylä-Herttuala S, Urtti A. Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: physicochemical and transfection studies. Biochim Biophys Acta. 1999;1415(2):331–41.

    Article  CAS  PubMed  Google Scholar 

  6. Nguyen J, Reul R, Roesler S, Dayyoub E, Schmehl T, Gessler T, et al. Amine-modified poly(vinyl alcohol)s as non-viral vectors for siRNA delivery: effects of the degree of amine substitution on physicochemical properties and knockdown efficiency. Pharm Res. 2010;27(12):2670–82.

    Article  CAS  PubMed  Google Scholar 

  7. Sato A, Choi SW, Hirai M, Yamayoshi A, Moriyama R, Yamano T, et al. Polymer brush-stabilized polyplex for a siRNA carrier with long circulatory half-life. J Control Release Off J Control Release Soc. 2007;122(3):209–16.

    Article  CAS  Google Scholar 

  8. Kim M, Kim HR, Chae SY, Larson RG, Lee H, Park JC. Effect of arginine-rich peptide length on the structure and binding strength of siRNA-peptide complexes. J Phys Chem B. 2013;117(23):6917–26.

    Article  CAS  PubMed  Google Scholar 

  9. Crombez L, Aldrian-Herrada G, Konate K, Nguyen QN, McMaster GK, Brasseur R, et al. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther. 2009;17(1):95–103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wagner M, Rinkenauer AC, Schallon A, Schubert US. Opposites attract: influence of the molar mass of branched poly(ethylene imine) on biophysical characteristics of siRNA-based polyplexese. RSC Adv. 2013;3(31):12774.

    Article  CAS  Google Scholar 

  11. Van Rompaey E, Engelborghs Y, Sanders N, De Smedt SC, Demeester J. Interactions between oligonucleotides and cationic polymers investigated by fluorescence correlation spectroscopy. Pharm Res. 2001;18(7):928–36.

    Article  PubMed  Google Scholar 

  12. Pereira P, Jorge AF, Martins R, Pais A, Sousa F, Figueiras A. Characterization of polyplexes involving small RNA. J Colloid Interface Sci. 2012;387(1):84–94.

    Article  CAS  PubMed  Google Scholar 

  13. Buyens K, Meyer M, Wagner E, Demeester J, De Smedt SC, Sanders NN. Monitoring the disassembly of siRNA polyplexes in serum is crucial for predicting their biological efficacy. J Control Release. 2010;141(1):38–41.

    Article  CAS  PubMed  Google Scholar 

  14. Varkouhi AK, Mountrichas G, Schiffelers RM, Lammers T, Storm G, Pispas S, et al. Polyplexes based on cationic polymers with strong nucleic acid binding properties. Eur J Pharm Sci. 2012;45(4):459–66.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng M, Pavan GM, Neeb M, Schaper AK, Danani A, Klebe G, et al. Targeting the blind spot of polycationic nanocarrier-based siRNA delivery. ACS Nano. 2012;6(11):9447–54.

    Article  CAS  PubMed  Google Scholar 

  16. Gary DJ, Min J, Kim Y, Park K, Won Y-Y. The effect of N/P ratio on the in vitro and in vivo interaction properties of PEGylated poly[2-(dimethylamino)ethyl methacrylate]-based siRNA complexes. Macromol Biosci. 2013;13(8):1059–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ouyang D, Zhang H, Parekh HS, Smith SC. Structure and dynamics of multiple cationic vectors-siRNA complexation by all-atomic molecular dynamics simulations. J Phys Chem B. 2010;114(28):9231–7.

    Article  CAS  PubMed  Google Scholar 

  18. Vader P, van der Aa LJ, Engbersen JFJ, Storm G, Schiffelers RM. A method for quantifying cellular uptake of fluorescently labeled siRNA. J Control Release Off J Control Release Soc. 2010;148(1):106–9.

    Article  CAS  Google Scholar 

  19. Jensen LB, Griger J, Naeye B, Varkouhi AK, Raemdonck K, Schiffelers R, et al. Comparison of polymeric siRNA nanocarriers in a murine LPS-activated macrophage cell line: gene silencing, toxicity and off-target gene expression. Pharm Res. 2012;29(3):669–82.

    Article  CAS  PubMed  Google Scholar 

  20. Järve A, Müller J, Kim I-H, Rohr K, MacLean C, Fricker G, et al. Surveillance of siRNA integrity by FRET imaging. Nucleic Acids Res. 2007;35(18):e124.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Vuorimaa E, Urtti A, Seppänen R, Lemmetyinen H, Yliperttula M. Time-resolved fluorescence spectroscopy reveals functional differences of cationic polymer-DNA complexes. J Am Chem Soc. 2008;130(35):11695–700.

    Article  CAS  PubMed  Google Scholar 

  22. Buyens K, Lucas B, Raemdonck K, Braeckmans K, Vercammen J, Hendrix J, et al. A fast and sensitive method for measuring the integrity of siRNA-carrier complexes in full human serum. J Control Release Off J Control Release Soc. 2008;126(1):67–76.

    Article  CAS  Google Scholar 

  23. Lucas B, Remaut K, Sanders NN, Braeckmans K, De Smedt SC, Demeester J. Studying the intracellular dissociation of polymer-oligonucleotide complexes by dual color fluorescence fluctuation spectroscopy and confocal imaging. Biochemistry. 2005;44(29):9905–12.

    Article  CAS  PubMed  Google Scholar 

  24. Wang M, Adikane HV, Duhamel J, Chen P. Protection of oligodeoxynucleotides against nuclease degradation through association with self-assembling peptides. Biomaterials. 2008;29(8):1099–108.

    Article  PubMed  Google Scholar 

  25. Uchiyama H, Hirano K, Kashiwasake-Jibu M, Taira K. Detection of undegraded oligonucleotides in vivo by fluorescence resonance energy transfer. Nuclease activities in living sea urchin eggs. J Biol Chem. 1996;271(1):380–4.

    Article  CAS  PubMed  Google Scholar 

  26. Remaut K, Lucas B, Braeckmans K, Sanders NN, Demeester J, De Smedt SC. Protection of oligonucleotides against nucleases by pegylated and non-pegylated liposomes as studied by fluorescence correlation spectroscopy. J Control Release. 2005;110(1):212–26.

    Article  CAS  PubMed  Google Scholar 

  27. Sahl M, Muth S, Branscheid R, Fischer K, Schmidt M. Helix−coil transition in cylindrical brush polymers with poly-L-lysine side chains. Macromolecules. 2012;45:5167–75.

    Article  CAS  Google Scholar 

  28. Tabujew I, Freidel C, Krieg B, Helm M, Koynov K, Müllen K, et al. The guanidinium group as a key part of water-soluble polymer carriers for siRNA complexation and protection against degradation. Macromol Rapid Commun. 2014;35(13):1191–7.

    Article  CAS  PubMed  Google Scholar 

  29. Lam JKW, Liang W, Lan Y, Chaudhuri P, Chow MYT, Witt K, et al. Effective endogenous gene silencing mediated by pH responsive peptides proceeds via multiple pathways. J Control Release Off J Control Release Soc. 2012;158(2):293–303.

    Article  CAS  Google Scholar 

  30. Nuhn L, Hirsch M, Krieg B, Koynov K, Fischer K, Schmidt M, et al. Cationic nanohydrogel particles as potential siRNA carriers for cellular delivery. ACS Nano. 2012;6(3):2198–214.

    Article  CAS  PubMed  Google Scholar 

  31. Nuhn L, Gietzen S, Mohr K, Fischer K, Toh K, Miyata K, et al. Aggregation behavior of cationic nanohydrogel particles in human blood serum. Biomacromolecules. 2014;15(4):1526–33.

    Article  CAS  PubMed  Google Scholar 

  32. Schladt TD, Koll K, Prüfer S, Bauer H, Natalio F, Dumele O, et al. Multifunctional superparamagnetic MnO@SiO2 core/shell nanoparticles and their application for optical and magnetic resonance imaging. J Mater Chem. 2012;22(18):9253.

    Article  CAS  Google Scholar 

  33. Kitsera N, Khobta A, Epe B. Destabilized green fluorescent protein detects rapid removal of transcription blocks after genotoxic exposure. Biotechniques. 2007;43(2):222–7.

    Article  CAS  PubMed  Google Scholar 

  34. Hirsch M, Strand D, Helm M. Dye selection for live cell imaging of intact siRNA. Biol Chem. 2012;393(1–2):23–35.

    CAS  PubMed  Google Scholar 

  35. Seidu-Larry S, Krieg B, Hirsch M, Helm M, Domingo O. A modified guanosine phosphoramidite for click functionalization of RNA on the sugar edge. Chem Commun (Camb). 2012;48(89):11014–6.

    Article  CAS  Google Scholar 

  36. Hirsch M, Ziroli V, Helm M, Massing U. Preparation of small amounts of sterile siRNA-liposomes with high entrapping efficiency by dual asymmetric centrifugation (DAC). J Control Release Off J Control Release Soc. 2009;135(1):80–8.

    Article  CAS  Google Scholar 

  37. Adenier A, Aaron JJ. A spectroscopic study of the fluorescence quenching interactions between biomedically important salts and the fluorescent probe merocyanine 540. Spectrochim Acta A Mol Biomol Spectrosc. 2002;58(3):543–51.

    Article  CAS  PubMed  Google Scholar 

  38. Trubetskoy VS, Slattum PM, Hagstrom JE, Wolff J, Budker VG. Quantitative assessment of DNA condensation. Anal Biochem. 1999;267(2):309–13.

    Article  CAS  PubMed  Google Scholar 

  39. Kim I-H, Järve A, Hirsch M, Fischer R, Trendelenburg MF, Massing U, et al. FRET imaging of cells transfected with siRNA/liposome complexes. In: Weissig V, editor. Liposomes methods and protocols. Berlin: Springer; 2010. p. 439–55.

    Chapter  Google Scholar 

  40. Troiber C, Kasper JC, Milani S, Scheible M, Martin I, Schaubhut F, et al. Comparison of four different particle sizing methods for siRNA polyplex characterization. Eur J Pharm Biopharm. 2013;84(2):255–64.

    Article  CAS  PubMed  Google Scholar 

  41. Jerabek-Willemsen M, Wienken CJ, Braun D, Baaske P, Duhr S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol. 2011;9(4):342–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Hedrich J, Wu Y, Kuan S, Kühn F, Pietrowski E, Sahl M, et al. Polymer complexes in biological applications. In: Basché T, Müllen K, Schmidt M, editors. From single molecules to nanoscopically structured materials. Berlin: Springer; 2014. p. 211–35.

    Google Scholar 

  43. Kobitski AY, Hengesbach M, Seidu-Larry S, Dammertz K, Chow CS, van Aerschot A, et al. Single-molecule FRET reveals a cooperative effect of two methyl group modifications in the folding of human mitochondrial tRNA(Lys). Chem Biol. 2011;18(7):928–36.

    Article  CAS  PubMed  Google Scholar 

  44. Jafari M, Xu W, Naahidi S, Chen B, Chen P. A new amphipathic, amino-acid-pairing (AAP) peptide as siRNA delivery carrier: physicochemical characterization and in vitro uptake. J Phys Chem B. 2012;116(44):13183–91.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the DFG in the frame of the collaborative research center, featuring project grant A7 to M.H., A6 to M.S., B2 to K.K., A3 to W.T., A4 to R.Z. The cylindrical brush sample was synthesized by Dr. Mike Sahl, Institute for Physical Chemistry, University Mainz, which is gratefully acknowledged. Flow cytometry was kindly supported by the Cytometry Core Facility of the Institute of Molecular Biology (IMB), Mainz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Helm.

Additional information

Bettina Krieg and Markus Hirsch have an equal contribution to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 848 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krieg, B., Hirsch, M., Scholz, E. et al. New Techniques to Assess In Vitro Release of siRNA from Nanoscale Polyplexes. Pharm Res 32, 1957–1974 (2015). https://doi.org/10.1007/s11095-014-1589-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1589-7

KEY WORDS

Navigation