Skip to main content

Advertisement

Log in

Crystalline vs. Ionic Liquid Salt Forms of Active Pharmaceutical Ingredients: A Position Paper

  • Commentary
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Why not consider liquid salt forms of active pharmaceutical ingredients (APIs) as an alternative versatile tool in the pharmaceutical industry? Recent developments have shown that known APIs can be readily converted into ionic liquids and that these novel phases often possess different properties (e.g., improved solubilities and dissolution rates), which may have a direct impact on the pharmacokinetics and pharmacodynamics of the drug. They may also offer the potential of novel and more efficient delivery modes, as well as patent protection for each of the new forms of the drug. Since these pharmaceutically active ionic liquids represent a thermodynamically stable phase, they avoid the troublesome issues surrounding polymorphism and “polymorphic transformation.” In some cases, an active cation and an active anion can be combined to produce a liquid possessing dual functionality. Here we examine and challenge the current industry reliance on crystalline APIs by discussing the breadth and potential impact of liquid salts as a possible approach to phase control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

REFERENCES

  1. Heinrich Stahl P, Wermuth CG, editors. Handbook of Pharmaceutical Salts; Properties, Selection, and Use, VHCA and Wiley-VCH, 2008.

  2. Paulekuhn GS, Dressman JB, Saal C. Trends in active pharmaceutical ingredient salt selection based on analysis of the orange book database. J Med Chem. 2007;50:6665–72.

    Article  CAS  PubMed  Google Scholar 

  3. Brodin A, Nyqvist-Mayer A, Wadsten T, Forslund B, Broberg F. Phase diagram and aqueous solubility of the lidocaine-prilocaine binary system. J Pharm Sci. 1984;73:481–4.

    Article  CAS  PubMed  Google Scholar 

  4. Byrn SR, Pfeiffer RR, Stephenson G. Solid-State Chemistry of Dugs, Inc. West Lafayette: SSCI; 1999.

    Google Scholar 

  5. Peterson ML, Hickey MB, Zaworotko MJ, Almarsson O. Expanding the scope of crystal form evaluation in pharmaceutical science. J Pharm Pharm Sci. 2006;9:317–26.

    PubMed  Google Scholar 

  6. Dean PM, Turanjanin J, Yoshizawa-Fujita M, MacFarlane DR, Scott JL. Exploring an anti-crystal engineering approach to the preparation of pharmaceutically active ionic liquids. Cryst Growth Des. 2009;9:1137–45.

    Article  CAS  Google Scholar 

  7. Hough WL, Rogers RD. Ionic liquids then and now: from solvents to materials to active pharmaceutical ingredients. Bull Chem Soc Jpn. 2007;80:2262–9.

    Article  CAS  Google Scholar 

  8. Hough WL, Smiglak M, Rodriguez H, Swatloski RP, Spear SK, Daly DT, et al. The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem. 2007;31:1429–36.

    Article  CAS  Google Scholar 

  9. Hough-Troutman WL, Smiglak M, Griffin S, Reichert WM, Mirska I, Jodynis-Liebert J, et al. Ionic liquids with dual biological function: sweet and anti-microbial, hydrophobic quaternary ammonium-based salts. New J Chem. 2009;33:26–33.

    Article  CAS  Google Scholar 

  10. Karpinski PH. Polymorphism of active pharmaceutical ingredients. Chem Eng Technol. 2006;29:233–8.

    Article  CAS  Google Scholar 

  11. Rodriguez-Spong B, Price CP, Jayasankar A, Matzger AJ, Rodriguez-Hornedo N. General principles of pharmaceutical solid polymorphism. A supramolecular perspective. Adv Drug Delivery Rev. 2004;56:241–74.

    Article  CAS  Google Scholar 

  12. Singhal D, Curatolo W. Drug polymorphism and dosage form design: a practical perspective. Adv Drug Delivery Rev. 2004;56:335–47.

    Article  CAS  Google Scholar 

  13. Apotex wins latest round in generic Paxil litigation. http://www.nature.com/nrd/journal/v3/n6/full/nrd1423.html, (accessed 27/08/2009) 2004.

  14. Draper P. Eutectic liquid drug formulation, (Can.). US: Application; 2007. p. 5.

    Google Scholar 

  15. Reichert WM, Holbrey JD, Vigour KB, Morgan TD, Broker GA, Rogers RD. Approaches to crystallization from ionic liquids: complex solvents-complex results, or, a strategy for controlled formation of new supramolecular architectures? Chem Commun. 2006;46:4767–79.

    Article  Google Scholar 

  16. MacFarlane DR, Forsyth SA, Golding J, Deacon GB. Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion. Green Chem. 2002;4:444–8.

    Article  CAS  Google Scholar 

  17. Endres F, MacFarlane D, Abbott A, Editors. Electrodeposition from Ionic Liquids. Wiley-VCH, 2008.

  18. Howlett PC, MacFarlane DR, Hollenkamp AF. High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochem Solid-State Lett. 2004;7:A97–A101.

    Article  CAS  Google Scholar 

  19. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater. 2009;8:621–9.

    Article  CAS  PubMed  Google Scholar 

  20. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev. 1999;99:2071–83.

    Article  CAS  PubMed  Google Scholar 

  21. Biswas A, Shogren RL, Stevenson DG, Willett JL, Bhowmik PK. Ionic liquids as solvents for biopolymers: acylation of starch and zein protein. Carbohydr Polym. 2006;66:546–50.

    Article  CAS  Google Scholar 

  22. Fujita K, MacFarlane DR, Forsyth M. Protein solubilising and stabilising ionic liquids. Chem Commun. 2005;4804–6.

  23. Von Hagen J, Michelsen U. Use of ionic liquids for protein extraction, (Merck Patent G.m.b.H., Germany). DE: Application; 2006. p. 12.

    Google Scholar 

  24. Fujita K, Forsyth M, MacFarlane DR, Reid RW, Elliott GD. Unexpected improvement in stability and utility of cytochrome c by solution in biocompatible ionic liquids. Biotechnol Bioeng. 2006;94:1209–13.

    Article  CAS  PubMed  Google Scholar 

  25. Fujita K, MacFarlane DR, Forsyth M, Yoshizawa-Fujita M, Murata K, Nakamura N, et al. Solubility and stability of cytochrome c in hydrated ionic liquids: effect of Oxo acid residues and kosmotropicity. Biomacromolecules. 2007;8:2080–6.

    Article  CAS  PubMed  Google Scholar 

  26. Ranke J, Stolte S, Stormann R, Arning J, Jastorff B. Design of sustainable chemical products-the example of ionic liquids. Chem Rev. 2007;107:2183–206.

    Article  CAS  PubMed  Google Scholar 

  27. Demberelnyamba D, Kim K-S, Choi S, Park S-Y, Lee H, Kim C-J, et al. Synthesis and antimicrobial properties of imidazolium and pyrrolidinonium salts. Bioorg Med Chem. 2004;12:853–7.

    Article  CAS  PubMed  Google Scholar 

  28. Kumar V, Malhotra SV. Study on the potential anti-cancer activity of phosphonium and ammonium-based ionic liquids. Bioorg Med Chem Lett. 2009;19:4643–6.

    Article  CAS  PubMed  Google Scholar 

  29. Pernak J, Feder-Kubis J. Synthesis and properties of chiral ammonium-based ionic liquids. Chem-Eur J. 2005;11:4441–9.

    Article  CAS  Google Scholar 

  30. Pernak J, Goc I, Mirska I. Antimicrobial activities of protic ionic liquids with lactate anion. Green Chem. 2004;6:323–9.

    Article  CAS  Google Scholar 

  31. Pernak J, Sobaszkiewicz K, Foksowicz-Flaczyk J. Ionic liquids with symmetrical dialkoxymethyl-substituted imidazolium cations. Chem-Eur J. 2004;10:3479–85.

    Article  CAS  Google Scholar 

  32. Pernak J, Sobaszkiewicz K, Mirska I. Anti-microbial activities of ionic liquids. Green Chem. 2003;5:52–6.

    Article  CAS  Google Scholar 

  33. Carson L, Chau PKW, Earle MJ, Gilea MA, Gilmore BF, Gorman SP, et al. Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids. Green Chem. 2009;11:492–7.

    Article  CAS  Google Scholar 

  34. Rogers RD, Seddon KR. Ionic liquids: industrial applications to green chemistry. American Chemical Society. 2003.

  35. Goho A. The crystal form of a drug can be the secret to its success, 2004. www.sciencenews.org/articles/20040821/bob9.asp (accessed 27/08/2009).

  36. Legen I, Salobir M, Kerc J. Comparison of different intestinal epithelia as models for absorption enhancement studies. Int J Pharm. 2005;291:183–8.

    Article  CAS  PubMed  Google Scholar 

  37. Borka L, Haleblian JK. Crystal polymorphism of pharmaceuticals. Acta Pharm Jugosl. 1990;40:71–94.

    CAS  Google Scholar 

  38. Schuster D, Laggner C, Langer T. Why drugs fail - a study on side effects in new chemical entities. Curr Pharm Des. 2005;11:3545–59.

    Article  CAS  PubMed  Google Scholar 

  39. Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Delivery Rev. 2007;59:603–16.

    Article  CAS  Google Scholar 

  40. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Delivery Rev. 2001;48:27–42.

    Article  CAS  Google Scholar 

  41. O'Neil MJ, Smith A, Heckelman PE. The Merck Index. Whitehouse Station, NJ: Merck & Co. Inc.; 2001.

    Google Scholar 

  42. Zhao H. Are ionic liquids kosmotropic or chaotropic? An evaluation of available thermodynamic parameters for quantifying the ion kosmotropicity of ionic liquids. J Chem Technol Biotechnol. 2006;81:877–91.

    Article  CAS  Google Scholar 

  43. Bhargava BL, Klein ML. Initial stages of aggregation in aqueous solutions of ionic liquids: molecular dynamics studies. J Phys Chem B. 2009;113:9499–505.

    Article  CAS  PubMed  Google Scholar 

  44. Canongia Lopes Jose N, Costa Gomes Margarida F, Padua Agilio AH. Nonpolar, polar, and associating solutes in ionic liquids. J Phys Chem B. 2006;110:16816–8.

    Article  CAS  PubMed  Google Scholar 

  45. Jiang W, Wang Y, Voth GA. Molecular dynamics simulation of nanostructural organization in ionic liquid/water mixtures. J Phys Chem B. 2007;111:4812–8.

    Article  CAS  PubMed  Google Scholar 

  46. Nama D, Kumar PGA, Pregosin PS, Geldbach TJ, Dyson PJ. 1H, 19F-HOESY and PGSE diffusion studies on ionic liquids: the effect of co-solvent on structure. Inorg Chim Acta. 2006;359:1907–11.

    Article  CAS  Google Scholar 

  47. Zhao Y, Gao S, Wang J, Tang J. Aggregation of ionic liquids [C(n)mim]Br (n = 4, 6, 8, 10, 12) in D2O: a NMR study. J Phys Chem B. 2008;112:2031–9.

    Article  CAS  PubMed  Google Scholar 

  48. Fraser KJ, Izgorodina EI, Forsyth M, Scott JL, MacFarlane DR. Liquids intermediate between “molecular” and “ionic” liquids: Liquid Ion Pairs? Chem Commun. 2007;3817–9.

  49. MacFarlane DR, Forsyth M, Izgorodina EI, Abbott AP, Annat G, Fraser K. On the concept of ionicity in ionic liquids. PCCP. 2009;11:4962–7.

    CAS  PubMed  Google Scholar 

  50. Hamamoto H, Miwa Y. Tape preparation comprising etodolac in ionic liquid form, (Medrx Co., Ltd., Japan). WO: Application; 2009. p. 35

  51. Fei Z, Geldbach TJ, Zhao D, Dyson PJ. From dysfunction to bis-function: on the design and applications of functionalized ionic liquids. Chem-Eur J. 2006;12:2122–30.

    Article  CAS  Google Scholar 

  52. Wan LS. Interaction of salicylic acid with quaternary ammonium compounds. J Pharm Sci. 1968;57:1903–6.

    Article  CAS  PubMed  Google Scholar 

  53. Duan Z, Gu Y, Zhang J, Zhu L, Deng Y. Protic pyridinium ionic liquids: synthesis, acidity determination and their performances for acid catalysis. J Mol Catal A: Chem. 2006;250:163–8.

    Article  CAS  Google Scholar 

  54. Janus E, Goc-Maciejewska I, Lozynski M, Pernak J. Diels-Alder reaction in protic ionic liquids. Tetrahedron Lett. 2006;47:4079–83.

    Article  CAS  Google Scholar 

  55. Ogihara W, Kosukegawa H, Ohno H. Proton-conducting ionic liquids based upon multivalent anions and alkylimidazolium cations. Chem Commun. 2006;3637–9.

  56. Yoshizawa M, Xu W, Angell CA. Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of delta pKa from aqueous Solutions. J Am Chem Soc. 2003;125:15411–9.

    Article  CAS  PubMed  Google Scholar 

  57. Stoimenovski J, MacFarlane DR. Pharmaceutically active protic ionic liquids, congress on ionic liquids 3. Australia: Cairns; 2009.

    Google Scholar 

  58. Johansson KM, Izgorodina EI, Forsyth M, MacFarlane DR, Seddon KR. Protic ionic liquids based on the dimeric and oligomeric anions: [(AcO)xH(x-1)]. PCCP. 2008;10:2972–8.

    CAS  PubMed  Google Scholar 

  59. Belieres J-P, Angell CA. Protic ionic liquids: preparation, characterization, and proton free energy level representation. J Phys Chem B. 2007;111:4926–37.

    Article  CAS  PubMed  Google Scholar 

  60. Kennedy DF, Drummond CJ. Large aggregated ions found in some protic ionic liquids. J Phys Chem B. 2009;113:5690–3.

    Article  CAS  PubMed  Google Scholar 

  61. Bica K, Rogers RD. Confused ions in ionic liquids—pharmaceutically active ionic liquids composed of oligomers, Congress on Ionic Liquids 3, Cairns, Australia; 2009

Download references

ACKNOWLEDGEMENTS

DRM is grateful to the Australian Research Council for his Federation Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas R. MacFarlane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoimenovski, J., MacFarlane, D.R., Bica, K. et al. Crystalline vs. Ionic Liquid Salt Forms of Active Pharmaceutical Ingredients: A Position Paper. Pharm Res 27, 521–526 (2010). https://doi.org/10.1007/s11095-009-0030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-0030-0

KEY WORDS

Navigation