, Volume 25, Issue 5, pp 1100-1109

The USP Performance Verification Test, Part I: USP Lot P Prednisone Tablets—Quality Attributes and Experimental Variables Contributing to Dissolution Variance

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Purpose

Beyond instrumental qualification, proficiency testing is not usually a prerequisite for many analytical procedures, given reliance on a manufacturer’s assay validation coupled with regulatory review and inspection. Given the special features of the dissolution procedure, proficiency testing was put in place initially by pharmaceutical manufacturers and carried on by USP. Proficiency testing is designed to help ensure that execution of a dissolution procedure for solid oral dosage forms adequately supports administrative and legal decisions so that measurements made at different times, by different analysts, or with different methods can be confidently compared. USP has applied metrological principles to aid practitioners in carrying out the dissolution procedure alone and in collaborative studies to facilitate understanding potential sources of variability.

Materials and Methods

The present study aimed to identify key dissolution variables associated with USP Lot P Prednisone Tablets in conjunction with the USP Performance Verification Test (PVT). Using five dissolution test assemblies from different manufacturers, at least four of six analysts determined percents prednisone dissolved on dissolution Apparatus 1 (basket) and Apparatus 2 (paddle) on each assembly. Six replicate experiments were performed on each analyst–assembly combination with a set of six to eight tablets in each experiment.

Results and Conclusions

Statistical analysis demonstrated that dissolution test assemblies were the largest factor contributing to dissolution variability. Inherent tablet variability was low, and USP Lot P Prednisone Tablets did not contribute importantly to dissolution variability. Contributions from analyst and analytical procedure also were estimated to be low.

This article is Part I of a two-part article appearing in this issue.