Skip to main content
Log in

An Assessment of Recombinant Human Erythropoietin Effect on Reticulocyte Production Rate and Lifespan Distribution in Healthy Subjects

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

An empirical pharmacodynamic model was developed to assess the effect of recombinant human erythropoietin (rHu-EPO) treatment on the reticulocyte production rate and lifespan distribution.

Materials and Methods

Single doses of rHu-EPO at levels 20, 40, 60, 90, 120, and 160 kIU were administered to healthy volunteers (n = 8 per dose level). Erythropoietin plasma concentrations as well as hematologic responses were measured up to 42 days. The hematological data were used to determine explicit relationships between reticulocyte and red blood cell counts (RBC) and the reticulocytes’ production rate and lifespan distribution.

Results

The parameter estimates obtained by simultaneous fitting of the model to the reticulocyte and RBC data revealed that rHu-EPO transiently increased the reticulocyte lifespan from the baseline value of 1.7 days to 3.4 days and the effect lasted for 8.3 days. The dose dependent increase in the reticulocyte production had the maximal value of 77.5 109 cells/l/day and was followed by a rebound that was less than 9% of the baseline value. Both reticulocyte and RBC responses were preceded by a dose-independent lag time of 1.7 days.

Conclusions

The effect of rHu-EPO on the reticulocyte production rate and lifespan distribution was characterized. The results of the present study can be further utilized in building more mechanistic pharmacodynamic models of rHu-EPO stimulatory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

χ(t):

Jump function

C EPO :

rHu-EPO plasma concentration

CF:

Conversion factor for reticulocytes

Δk R(t):

Change of k R(t) from the baseline value

Δk R1 :

Increase in reticulocyte production rate due to rHu-EPO

Δk R2 :

Decrease in reticulocyte production rate following exposure to rHu-EPO

ΔRET(t):

Change of the reticulocyte count from the baseline value

ΔRBC(t):

Change of RBC count from the baseline value

ΔT :

Increase in the reticulocyte lifespan due to rHu-EPO treatment

ΔT 1 :

Duration of the rHu-EPO effect on reticulocyte lifespan distribution

ΔT 2 :

Duration of the rebound in reticulocyte production

δ(τ):

Dirac delta function

D :

Dose

ε :

Residual error

E :

Effect

E 0 :

Baseline effect

E max :

Maximal effect

ED50 :

Dose eliciting 50% of the maximal effect

INT(z):

The integral part of the number z

kout(t):

Reticulocyte elimination rate

kR(t):

Reticulocyte production rate

k R0 :

Baseline reticulocyte production rate

k R1 :

Reticulocyte production rate during rHu-EPO stimulation

k R2 :

Reticulocyte production rate during the rebound

(t,τ):

Probability density function for reticulocyte lifespan distribution at time t

0(τ):

Time independent probability density function for reticulocyte lifespan distribution

MRBC:

Mature red blood cells; mature red blood cell count

MRBC0 :

Baseline mature red blood cell count

N :

Integer part of the ratio t/T RET0

p.d.f.:

Probability density function

RBC:

Red blood cells

RBC0 :

Baseline red blood cell count

RET:

Reticulocytes; reticulocyte count

RET0 :

Baseline reticulocyte count

RHu-EPO:

Recombinant human erythropoietin

σ :

Standard deviation of the residual error

τ :

Reticulocyte lifespan

T 0 :

Lag time between rHu-EPO administration and its effect

T 1 :

Time at which the effect of rHu-EPO on the reticulocyte lifespan distribution stops

T 2 :

Time at which the rebound ends

T RET :

Reticulocyte lifespan

T RET0 :

Baseline reticulocyte lifespan

T RBC :

Red blood cell lifespan

t max :

Observed reticulocyte count peak time

UIR(t):

Unit impulse response

References

  1. J. W. Fisher. Erythropoietin: physiology and pharmacology update. Exp. Biol. Med. 228:1–14 (2003).

    CAS  Google Scholar 

  2. W. K. Cheung, B. L. Goon, M. C. Guilfoyle, and M. C. Wacholtz. Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin after single and multiple subcutaneous doses to healthy subjects. Clin. Pharmacol. Ther. 64:412–423 (1998).

    Article  PubMed  CAS  Google Scholar 

  3. N. Hayashi, K. P. Zuideveld, P. Jordan, and R. Gieschke. A mechanism-based PK/PD model predicts the time course of hematological responses for epoetin beta. PAGE 12 (2003) Abstr 396, (www.page-meeting.org/?abstract=396).

  4. R. Ramakrishnan, W. K. Cheung, M. C. Wacholtz, N. Minton, and W. J. Jusko. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after single and multiple doses in healthy volunteers. J. Clin. Pharmacol. 44:991–1002 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. D. E. Uehlinger, F. A. Gotch, and L. B. Sheiner. A pharmacodynamic model of erythropoietin therapy for uremic anemia. Clin. Pharmacol. Therap. 51:76–89 (1992).

    Article  CAS  Google Scholar 

  6. A. C. Heatherington, D. Henry, R. Patel, N. S. Tchekmedyian, R. Berg, M. Austin, G. Rossi, and J. Glaspy. The impact of timing of chemotherapy relative to darbepoetin alfa (DA) on the pharmacokinetics (PK) and hematologic effects. Clin. Pharm. Ther. 75:P60 (2004).

    Google Scholar 

  7. A. Major, C. Bauer, C. Breyman, A. Huch, and R. Huch. rh-Erythropoietin stimulates immature reticulocyte release in man. Br. J. Haematol. 87:605–608 (1994).

    PubMed  CAS  Google Scholar 

  8. N. H. Al-Huniti, J. A. Widness, R. L. Schmidt, and P. Veng-Pedersen. Pharmacodynamic analysis of changes in reticulocyte subtype distribution in phlebotomy-induced stress erythropoiesis. J. Pharmacokinet. Pharmacodyn. 32:359–376 (2005).

    Article  PubMed  Google Scholar 

  9. A. Rescigno, and G. Segre. Drug and Tracer Kinetics. Blaisdell, Waltham, MA, 1966.

    Google Scholar 

  10. M. Loeffler, K. Pantel, H. Wulff, and H. E. Wichmann. A mathematical model of erythropoiesis in mice and rats, Part 1: structure of the model. Cell Tissue Kinet. 22:13–30 (1989).

    PubMed  CAS  Google Scholar 

  11. W. Krzyzanski, R. Ramakrishnan, and W. J. Jusko. Basic pharmacodynamic models for agents that alter production of natural cells. J. Pharmacokin. Biopharm. 27:467–489 (1999).

    CAS  Google Scholar 

  12. W. Krzyzanski, S. Woo, and W. J. Jusko. Pharmacodynamic models for agents that alter productions of natural cells with various distributions of lifespans. J. Pharmacokinet. Pharmacodyn. 33:125–166 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. S. Neelakantan, J. Widness, R. Schmidt, P. and Veng-Pedersen. Novel deconvolution method for model-independent direct analysis of cellular production and transformation rates. AAPS J. 7 S2: Abstract T2330 (2005).

  14. L. Ratnasingam. An open-label, randomized, parallel-design study to investigate the pharmacokinetic and pharmacodynamic profiles of single subcutaneously administered doses of epoetin alfa in healthy male volunteers. Protocol EPO-PHI-380. Data on file, Johnson & Johnson Pharmaceutical Research and Development, (2001).

  15. S. L. Beal and L. B. Sheiner. NONMEM Users Guide. San Francisco: NONMEM Project Group, Univ. Calif. (1989).

  16. B. Efron, and R. Tibshirani. An Introduction to the Bootstrap, Chapman and Hall, London, UK (1993).

    Google Scholar 

  17. R. Ramakrishnan, W. K. Cheung F. Farrell, L. Joffee, and W. J. Jusko. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous dose administration in cynomologous monkeys. J. Pharmacol. Exp. Ther. 306:1–8 (2003).

    Article  CAS  Google Scholar 

  18. W. Krzyzanski, W. J. Jusko, M. C. Wacholtz, N. Minton, and W. K. Cheung. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after multiple subcutaneous doses in healthy subjects. Eur. J. Pharm. Sci. 26:295–306 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. S. H. Chapel, P. Veng-Pedersen, R. L. Schmidt, and J. A. Widness. A pharmacodynamic analysis of erythropoietin-stimulated reticulocyte response in phlebotomized sheep. J. Pharmacol. Exp. Ther. 295:346–351 (2000).

    PubMed  CAS  Google Scholar 

  20. P. Veng-Pedersen, S. Chapel, P. R. L. Schmidt, N. H. Al-Huniti, R. T. Cook, and J. A. Widness. An integrated pharmacodynamic analysis of erythropoietin, reticulocyte, and hemoglobin responses in acute anemia. Pharm. Res. 19:1630–1635 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. N. I. Berlin and P. D. Berk. The biological life of the red cell. In: D. M. Surgenor (ed.), The Red Blood Cell. Vol. II. Academic Press, New York, 1975.

    Google Scholar 

  22. L. Rice, W. Ruiz, T. Driscoll, C. E. Whitley, R. Tapa, D. L. Hachey, G. F. Gonzales, and C. P. Alfrey. Neocytolysis on descent from altitude: a newly recognized mechanism for the control of red cell mass. Ann. Intern. Med. 134:652–656 (2001).

    PubMed  CAS  Google Scholar 

  23. N. A. Noble, Q. P. Xu, L. L. Hoge. Reticulocytes II: reexamination of the in vivo survival of stress reticulocytes. Blood 75:1877–1882 (1990).

    PubMed  CAS  Google Scholar 

  24. A. Ganzoni, R. S. Hillman, and C. A. Finch, Maturation of the macroreticulocyte. Br. J. Haematol. 16:119–135 (1969).

    PubMed  CAS  Google Scholar 

  25. S. E. Come, S. B. Shohet, and S. H. Robinson. Surface remodeling vs. whole-cell hemolysis of reticulocytes produced with erythroid stimulation or iron deficiency anemia. Blood 44:817–830 (1974)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Johnson & Johnson Pharmaceutical Research & Development, A Division of Janssen Pharmaceutica, NV, Beerse, Belgium, and in part by the National Institute of General Medical Sciences, National Institutes of Health Grant GM 57980.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Jose Perez-Ruixo.

Appendices

Appendix A

Derivation of the Precursor–successor Relationship Eq. 12

If the fixed lifespan T RET0 is assumed for all reticulocytes, then the RBC production is the delayed T RET0 reticulocyte production rate (11):

$$ k_{{{\text{out}}}} {\left( k \right)} = k_{{\text{R}}} {\left( {t - T_{{{\text{RET}}0}} } \right)} $$
(25)

Thus, similarly to Eq. 11, one can write

$$ {\text{MRBC}}{\left( t \right)} = {\int\limits_{t - T_{{{\text{RBC}}}} }^t {k_{{\text{R}}} {\left( {{\text{z}} - T_{{{\text{RET}}0}} } \right)}{\text{d}}z} } $$
(26)

Changing the variables in the above integral \( s = z - T_{{{\text{RET0}}}} \) leads to

$$ {\text{MRBC}}{\left( t \right)} = {\int\limits_{t - T_{{{\text{RET}}0 - }} - T_{{{\text{RBC}}}} }^{t - T_{{{\text{RET}}0}} } {k_{{\text{R}}} {\left( s \right)}{\text{d}}s} } $$
(27)

The interval of integration in Eq. 27, \( t - T_{{{\text{RET0}}}} > s > t - T_{{{\text{RET0}}}} - T_{{{\text{RBC}}}} \), can be partitioned to the following subintervals: \( t - T_{{{\text{RET}}}} > s > t - 2T_{{{\text{RET}}}} ,\,t - 2T_{{{\text{RET}}}} > s > t - 3T_{{{\text{RET}}}} , \ldots ,t - NT_{{{\text{RET}}}} > s > t - {\left( {N + 1} \right)}T_{{{\text{RET0}}}} \), where N =INT(t/T RET0) is the integer describing how many times t is bigger than T RET0. One can now decompose the integral in Eq. 27 into a sum of integrals over these subintervals and a remainder:

$$ {\text{MRBC}}{\left( t \right)} = {\sum\limits_{i = 1}^N {{\int\limits_{t - {\left( {i + 1} \right)} \cdot T_{{{\text{RET0}}}} }^{t - i \cdot T_{{{\text{RET0}}}} } {k{\left( s \right)}{\text{d}}s} }} } + {\int\limits_{t - T_{{{\text{RBC}}}} - T_{{{\text{RET0}}}} }^{t - {\left( {N + 1} \right)} \cdot T_{{{\text{RET0}}}} } {k{\left( s \right)}{\text{d}}s} } $$
(28)

Equation 11 implies that for any integer i

$$ {\text{RET}}{\left( {t - i \cdot T_{{{\text{RET}}}} } \right)} = {\int\limits_{t - {\left( {i + 1} \right)} \cdot T_{{{\text{RET0}}}} }^{t - i \cdot T_{{{\text{RET0}}}} } {k_{{\text{R}}} {\left( s \right)}{\text{d}}s} } $$
(29)

Since for t/T RET < N + 1, the upper limit in the reminder integral in Eq. 28 is less than 0, and for t ≤ T RBC the lower limit in this integral is less than 0 as well. We assume that prior to erythropoietin treatment the reticulocyte production was at the baseline level, k R(s) = k R0 for s < 0. Then the reminder integral in Eq. 28 is equal to

$$ {\int\limits_{t - T_{{{\text{RBC}}}} - T_{{{\text{RET0}}}} }^{t - {\left( {N + 1} \right)} \cdot T_{{{\text{RET0}}}} } {k_{{\text{R}}} {\left( {\text{z}} \right)}{\text{d}}z = T_{{{\text{RBC}}}} \cdot k_{{{\text{R0}}}} - N \cdot T_{{{\text{RET0}}}} \cdot k_{{{\text{R0}}}} } } $$
(30)

Taking into account the baseline Eqs. 4 and 5 yields

$$ T_{{{\text{RBC}}}} \cdot k_{{{\text{R0}}}} - N \cdot T_{{{\text{RET0}}}} \cdot k_{{{\text{R0}}}} = {\text{MRBC}}_{0} - N \cdot {\text{RET}}_{0} $$
(31)

One can now combine Eqs. 28, 29, 30, 31, and obtain

$$ {\text{MRBC}}{\left( t \right)} - {\text{MRBC}}_{0} = {\sum\limits_{i = 1}^N {{\text{RET}}{\left( {t - iT_{{{\text{RET0}}}} } \right)} - {\text{RET}}_{0} } } $$
(32)

Because RBC is the sum of MRBC and RET, then

$$ \Delta {\text{RBC}}{\left( t \right)} = \Delta {\text{RET}}{\left( t \right)} + {\sum\limits_{i = 1}^N {\Delta {\text{RET}}{\left( {t - iT_{{RET0}} } \right)}} } $$
(33)

and Eq. 12 follows.

APPENDIX B

Derivation of equation for RET(t)

Taking into account Eq. 16 for the reticulocyte conversion rate k out(t) one can integrate both sides of Eq. 1 from 0 to t and obtain

$$ {\text{RET}}{\left( t \right)} = R{\left( 0 \right)} + {\int\limits_0^t {k_{{\text{R}}} {\left( z \right)}{\text{dz}}} } - {\int\limits_0^t {k_{{\text{R}}} {\left( {{\text{z}} - T_{{{\text{RET0}}}} } \right)}{\left( {1 - \chi {\left( {z - T_{{{\text{RET0}}}} } \right)}} \right)}{\text{d}}z} } - {\int\limits_0^t {k_{{\text{R}}} {\left( {z - T_{{{\text{RET}}}} } \right)}\chi {\left( {z - T_{{{\text{RET}}}} } \right)}{\text{d}}z} } $$
(34)

Changing the variables in the second integral \( s = z - T_{{{\text{RET0}}}} \) and in the third integral \( s = z - T_{{{\text{RET}}}} \) yields

$$ {\text{RET}}{\left( t \right)} = R{\left( 0 \right)} + {\int\limits_0^t {k_{{\text{R}}} {\left( z \right)}{\text{d}}z} } - {\int\limits_{ - T_{{{\text{RET0}}}} }^{t - T_{{{\text{RET0}}}} } {k_{{\text{R}}} {\left( s \right)}{\text{d}}z} } + {\int\limits_{ - T_{{{\text{RET0}}}} }^{t - T_{{{\text{RET0}}}} } {k_{{\text{R}}} {\left( s \right)}\chi {\left( s \right)}{\text{d}}z} } - {\int\limits_{ - T_{{{\text{RET}}}} }^{t - T_{{{\text{RET}}}} } {k_{{\text{R}}} {\left( s \right)}\chi {\left( s \right)}{\text{d}}z} } $$
(35)

Since for \( t < 0{\text{ }}k_{{\text{R}}} {\left( t \right)} = k_{{{\text{R0}}}} \) and χ(t) = 0, the integrals in Eq. 35 can be further simplified to

$$ {\text{RET}}{\left( t \right)} = R{\left( 0 \right)} - T_{{{\text{RET0}}}} k_{{{\text{R0}}}} + {\int\limits_0^t {k_{{\text{R}}} {\left( z \right)}{\text{d}}z} } - {\int\limits_0^{t - T_{{{\text{RET0}}}} } {k_{{\text{R}}} {\left( s \right)}{\text{d}}z} } + {\int\limits_0^{t - T_{{{\text{RET0}}}} } {k_{{\text{R}}} {\left( s \right)}\chi {\left( s \right)}{\text{d}}z} } - {\int\limits_0^{t - T_{{{\text{RET}}}} } {k_{{\text{R}}} {\left( s \right)}\chi {\left( s \right)}{\text{d}}z} } $$
(36)

The reticulocytes at time t = 0 are at steady-state, therefore Eq. 4 implies that the first and second term in Eq. 36 cancel each other out. If the first integral is combined with the second, and the third with the fourth, then one obtains

$$ {\text{RET}}{\left( t \right)} = {\int\limits_{t - T_{{{\text{RET0}}}} }^t {k_{{\text{R}}} {\left( z \right)}{\text{d}}z + {\int\limits_{t - T_{{{\text{RET}}}} }^{t - T_{{{\text{RET0}}}} } {k_{{\text{R}}} {\left( z \right)}\chi {\left( z \right)}{\text{d}}z} }} } $$
(37)

which is the exact form of Eq. 17. Assuming the following relationships between the time parameters

$$ T_{{{\text{RET0}}}} < T_{{{\text{TRET}}}} ,{\text{ }}T_{{\text{0}}} + T_{{{\text{RET}}}} < T_{{\text{1}}} {\text{, and }}T_{{\text{1}}} + T_{{{\text{RET}}}} < T_{{\text{2}}} $$
(38)

they can be ordered as follows \( T_{{\text{0}}} < T_{{\text{0}}} + T_{{{\text{RET0}}}} < T_{{\text{0}}} + T_{{{\text{RET}}}} < T_{{\text{1}}} < T_{{\text{1}}} + T_{{{\text{RET0}}}} < T_{{\text{1}}} + T_{{{\text{RET}}}} < T_{{\text{2}}} < T_{{\text{2}}} + T_{{{\text{RET0}}}} \). Consequently, an arbitrary t value must fall into one of the following intervals:

t ≤ T0, then

$$ {\text{RET}}{\left( t \right)} = {\text{RET}}_{{\text{0}}} $$
(39)

T0 < t ≤ T0 + TRET0, then

$$ {\text{RET}}{\left( t \right)} = {\int\limits_{t - T_{{{\text{RET0}}}} }^t {k_{{\text{R}}} {\left( z \right)}{\text{d}}z} } = {\int\limits_{t - T_{{{\text{RET0}}}} }^{T_{0} } {k_{{\text{R}}} {\left( z \right)}{\text{d}}z} } + {\int\limits_{T_{{\text{0}}} }^t {k_{{\text{R}}} {\left( z \right)}{\text{d}}z} } = k_{{{\text{R0}}}} {\left( {T_{0} - t + T_{{{\text{RET0}}}} } \right)} + k_{{{\text{R1}}}} {\left( {t - T_{0} } \right)} $$
(40)

T0 + TRET0 < t ≤ T0 + TRET, then

$$ {\text{RET}}{\left( t \right)} = {\int\limits_{t - T_{{{\text{RET0}}}} }^{T_{0} } {k_{{\text{R}}} {\left( z \right)}{\text{d}}z} } + {\int\limits_{T_{0} }^t {k_{{\text{R}}} {\left( z \right)}{\text{d}}z} } + {\int\limits_{T_{{\text{0}}} }^{t - T_{{{\text{RET0}}}} } {k_{{\text{R}}} {\left( z \right)}\chi {\left( z \right)}{\text{d}}z} } = {\int\limits_{T_{0} }^t {k_{{\text{R}}} {\left( z \right)}{\text{d}}z} } = k_{{{\text{R1}}}} {\left( {t - T_{0} } \right)} $$
(41)

T0 + TRET < t ≤ T1, then

$$ {\text{RET}}{\left( t \right)} = k_{{{\text{R1}}}} T_{{{\text{RET0}}}} + k_{{{\text{R1}}}} {\left( {T_{{{\text{RET}}}} - T_{{{\text{RET0}}}} } \right)} = k_{{{\text{R1}}}} T_{{{\text{RET}}}} $$
(42)

T1 < t ≤ T1 + TRET0, then

$$ {\text{RET}}{\left( t \right)} = {\int\limits_{t - T_{{{\text{RET0}}}} }^{T_{1} } {k_{{\text{R}}} {\left( {\text{z}} \right)}{\text{dz}}} } + {\int\limits_{{\text{T}}_{{\text{1}}} }^{\text{t}} {{\text{k}}_{{\text{R}}} {\left( z \right)}{\text{d}}z} } + {\int\limits_{t - T_{{{\text{RET}}}} }^{t - T_{{{\text{RET0}}}} } {k_{{\text{R}}} {\left( z \right)}\chi {\left( z \right)}{\text{d}}z} } = {\int\limits_{t - T_{{{\text{RET}}}} }^{T_{1} } {k_{{\text{R}}} {\left( z \right)}{\text{d}}z} } + {\int\limits_{T_{{\text{1}}} }^t {k_{{\text{R}}} {\left( z \right)}{\text{d}}z} } = k_{{{\text{R1}}}} {\left( {T_{1} - t + T_{{{\text{RET}}}} } \right)} + k_{{{\text{R2}}}} {\left( {t - T_{{\text{1}}} } \right)} $$
(43)

T1 + TRET0 < t ≤ T1 + TRET, then

$$ {\text{RET}}{\left( {\text{t}} \right)} = {\int\limits_{{\text{t}} - {\text{T}}_{{{\text{RET0}}}} }^{\text{t}} {{\text{k}}_{{\text{R}}} {\left( {\text{z}} \right)}{\text{dz}}} } + {\int\limits_{{\text{t}} - {\text{T}}_{{{\text{RET}}}} }^{{\text{T}}_{1} } {{\text{k}}_{{\text{R}}} {\left( {\text{z}} \right)}{\text{dz}}} } = {\text{k}}_{{{\text{R2}}}} {\text{T}}_{{{\text{RET0}}}} + {\text{k}}_{{{\text{R1}}}} {\left( {{\text{T}}_{1} - {\text{t}} + {\text{T}}_{{{\text{RET}}}} } \right)} $$
(44)

T1 + TRET < t ≤ T2, then

$$ {\text{RET}}{\left( t \right)} = k_{{{\text{R2}}}} T_{{{\text{RET0}}}} $$
(45)

T2 < t ≤ T2 + TRET0, then

$$ {\text{RET}}{\left( t \right)} = {\int\limits_{t - T_{{{\text{RET0}}}} }^{T_{2} } {k_{{\text{R}}} {\left( z \right)}{\text{d}}z} } + {\int\limits_{T_{2} }^t {k_{{\text{R}}} {\left( z \right)}{\text{d}}z} } = k_{{{\text{R2}}}} {\left( {T_{2} - t + T_{{{\text{RET0}}}} } \right)} + k_{{{\text{R0}}}} {\left( {t - T_{2} } \right)} $$
(46)

T2 + TRET0 ≤ t, then

$$ {\text{RET}}{\left( t \right)} = k_{{{\text{R0}}}} T_{{{\text{RET0}}}} $$
(47)

Arranging terms in Eqs. 39, 40, 41, 42, 43, 44, 45, 46, 47 yields Eq. 10. A similar derivation holds for Eq. 20, except that one needs to consider the cases determined by the intervals T 0 < T 1 < T 2 < T RBC and use Eq. 8.

APPENDIX C

NONMEM control stream and data file for estimation of T RET0 from Eq. 12

$PROB Estimation of TRET

$INPUT ID TIME CMT MDV DV RET RBC DOSE

$DATA C:\data_1041.csv IGNORE=#

$PRED

TRET = THETA(1)*EXP(ETA(1))

"OPEN(2,FILE=’C:\nmv\run\fdata’)

"REWIND 2

"DO WHILE (.NOT.EOF(2))

" READ(2,*) X1,X2,X3,X4,X5,X6,X7,X8

" IF(X1.EQ.ID.AND.CMT.EQ.1) THEN

" IF (X2.EQ.0) RT0=X6

" IF (X2.EQ.2) RT2=X6

" IF (X2.EQ.3) RT3=X6

" IF (X2.EQ.4) RT4=X6

" IF (X2.EQ.5) RT5=X6

" IF (X2.EQ.6) RT6=X6

" IF (X2.EQ.7) RT7=X6

" IF (X2.EQ.8) RT8=X6

" IF (X2.EQ.9) RT9=X6

" IF (X2.EQ.11) RT11=X6

" IF (X2.EQ.13) RT13=X6

" IF (X2.EQ.15) RT15=X6

" IF (X2.EQ.17) RT17=X6

" IF (X2.EQ.19) RT19=X6

" IF (X2.EQ.21) RT21=X6

" IF (X2.EQ.23) RT23=X6

" IF (X2.EQ.25) RT25=X6

" IF (X2.EQ.27) RT27=X6

" IF (X2.EQ.28) RT28=X6

" IF (X2.EQ.31) RT31=X6

" IF (X2.EQ.32) RT32=X6

" IF (X2.EQ.34) RT34=X6

" IF (X2.EQ.35) RT35=X6

" IF (X2.EQ.40) RT40=X6

" IF (X2.EQ.42) RT42=X6

" IF (X2.EQ.0) RBC0=X7

"ENDIF

"ENDDO

"CLOSE(2)

" RB=RBC0

" IF(DOSE.GT.0) THEN

" I=0

" DO WHILE (TIME−I*TRET.GE.0.0)

" X=TIME−I*TRET

" IF (0.LT.X.AND.X.LE.2) RB=RB+RT0+(RT2−RT0)/(2−0)*(X−0)−RT0

" IF (2.LT.X.AND.X.LE.3) RB=RB+RT2+(RT3−RT2)/(3−2)*(X−2)−RT0

" IF (3.LT.X.AND.X.LE.4) RB=RB+RT3+(RT4−RT3)/(4−3)*(X−3)−RT0

" IF (4.LT.X.AND.X.LE.5) RB=RB+RT4+(RT5−RT4)/(5−4)*(X−4)−RT0

" IF (5.LT.X.AND.X.LE.6) RB=RB+RT5+(RT6−RT5)/(6−5)*(X−5)−RT0

" IF (6.LT.X.AND.X.LE.7) RB=RB+RT6+(RT7−RT6)/(7−6)*(X−6)−RT0

" IF (7.LT.X.AND.X.LE.8) RB=RB+RT7+(RT8−RT7)/(8−7)*(X−7)−RT0

" IF (8.LT.X.AND.X.LE.9) RB=RB+RT8+(RT9−RT8)/(9−8)*(X−8)−RT0

" IF (9.LT.X.AND.X.LE.11) RB=RB+RT9+(RT11−RT9)/(11−9)*(X−9)−RT0

" IF (11.LT.X.AND.X.LE.13) RB=RB+RT11+(RT13−RT11)/(13−11)*(X−11)−RT0

" IF (13.LT.X.AND.X.LE.15) RB=RB+RT13+(RT15−RT13)/(15−13)*(X−13)−RT0

" IF (15.LT.X.AND.X.LE.17) RB=RB+RT15+(RT17−RT15)/(17−15)*(X−15)−RT0

" IF (17.LT.X.AND.X.LE.19) RB=RB+RT17+(RT19−RT17)/(19−17)*(X−17)−RT0

" IF (19.LT.X.AND.X.LE.21) RB=RB+RT19+(RT21−RT19)/(21−19)*(X−19)−RT0

" IF (21.LT.X.AND.X.LE.23) RB=RB+RT21+(RT23−RT21)/(23−21)*(X−21)−RT0

" IF (23.LT.X.AND.X.LE.25) RB=RB+RT23+(RT25−RT23)/(25−23)*(X−23)−RT0

" IF (25.LT.X.AND.X.LE.27) RB=RB+RT25+(RT27−RT25)/(27−25)*(X−25)−RT0

" IF (27.LT.X.AND.X.LE.28) RB=RB+RT27+(RT28−RT27)/(28−27)*(X−27)−RT0

" IF (28.LT.X.AND.X.LE.31) RB=RB+RT28+(RT31−RT28)/(31−28)*(X−28)−RT0

" IF (31.LT.X.AND.X.LE.32) RB=RB+RT31+(RT32−RT31)/(32−31)*(X−31)−RT0

" IF (32.LT.X.AND.X.LE.34) RB=RB+RT32+(RT34−RT32)/(34−32)*(X−32)−RT0

" IF (34.LT.X.AND.X.LE.35) RB=RB+RT34+(RT35−RT34)/(35−34)*(X−34)−RT0

" IF (35.LT.X.AND.X.LE.40) RB=RB+RT35+(RT40−RT35)/(40−35)*(X−35)−RT0

" IF (40.LT.X.AND.X.LE.42) RB=RB+RT40+(RT42−RT40)/(42−40)*(X−40)−RT0

" I=I+1

" ENDDO

" ENDIF

IPRED=RB+ERR(1)

Y = IPRED

IRES = DV − IPRED

$THETA (0,,15) ;TRET

$OMEGA 0.00 FIX

$SIGMA 0.02

$EST NSIGDIG=3 MAX=9999 PRINT=1 NOABORT POSTHOC METHOD=1

$COV PRINT=E

$TABLE ID TIME CMT IPRED IRES DOSE RET

NOPRINT FILE=C:\1041.txt

The following file data_1041.txt contains records for Subject 1041. The missing values for RET were calculated by the linear interpolation of the neighboring reticulocyte measurements

#ID

TIME

CMT

MDV

DV

RET

RBC

DOSE

1041

0

1

0

5.145

0.054

5.145

40

1041

2

1

0

5.55

0.072

5.55

40

1041

3

1

0

5.49

0.135

5.49

40

1041

4

1

0

5.36

0.192

5.36

40

1041

5

1

0

5.2

0.253

5.2

40

1041

6

1

0

5.26

0.245

5.26

40

1041

7

1

0

5.5

0.291

5.5

40

1041

8

1

0

5.4

0.349

5.4

40

1041

9

1

0

5.69

0.218

5.69

40

1041

11

1

0

5.44

0.132

5.44

40

1041

13

1

0

5.37

0.103

5.37

40

1041

15

1

0

5.27

0.092

5.27

40

1041

17

1

0

5.45

0.070

5.45

40

1041

19

1

0

5.55

0.093

5.55

40

1041

21

1

0

5.39

0.072

5.39

40

1041

23

1

0

5.49

0.083

5.49

40

1041

25

1

0

5.55

0.084

5.55

40

1041

27

1

1

0

0.108

0

40

1041

28

1

0

5.49

0.120

5.49

40

1041

31

1

1

0

0.111

0

40

1041

32

1

1

0

0.108

0

40

1041

34

1

1

0

0.101

0

40

1041

35

1

1

0

0.098

0

40

1041

40

1

1

0

0.082

0

40

1041

42

1

0

5.22

0.076

5.22

40

APPENDIX D

NONMEM control stream for estimation of T 0, ΔT, ΔT 1, Δk R1, and Δk R2

$PROB RHUEPO EFFECT ON RET AND RBC

$INPUT ID TIME CMT MDV DV RET RBC DOSE

$DATA C:\data_1034.csv IGNORE = #

$PRED

T0 = THETA(1)*EXP(ETA(1))

DT1 = THETA(2)

DT = THETA(3)

DT2 = THETA(4)

DKR1 = THETA(5)

DKR2 = THETA(6)

"OPEN(2,FILE=’C:\nmv\run\fdata’)

"REWIND 2

"DO WHILE (.NOT.EOF(2))

" READ(2,*) X1,X2,X3,X4,X5,X6,X7,X8

" IF(X1.EQ.ID.AND.CMT.EQ.1) THEN

" IF (X2.EQ.0) THEN

" RT0=X6

" RBC0=X7

" TT=RT0/(RBC0−RT0)*120.0

" ENDIF

" ENDIF

"ENDDO

" CLOSE(2)

KR0=RT0/TT

KR1=KR0+DKR1

KR2=KR0−DKR2

T1=T0+DT1

T2=T1+DT2

TR=TT+DT

CH0=0

CH1=1

CH2=0

X=TIME

IT1=0

IT2=0

IT3=0

IT4=0

IF (X.LE.T0) IT1=KR0*X

IF (X.GT.T0.AND.X.LE.T1) IT1=KR1*(X−T0)+KR0*T0

IF (X.GT.T1.AND.X.LE.T2) IT1=KR2*(X−T1)+KR1*(T1−T0)+KR0*T0

IF (X.GT.T2) IT1=KR0*(X−T2)+KR2*(T2−T1)+KR1*(T1−T0)+KR0*T0

X=TIME−TT

IF (X.LE.T0) IT2=KR0*X

IF (X.GT.T0.AND.X.LE.T1) IT2=KR1*(X−T0)+KR0*T0

IF (X.GT.T1.AND.X.LE.T2) IT2=KR2*(X−T1)+KR1*(T1−T0)+KR0*T0

IF (X.GT.T2) IT2=KR0*(X−T2)+KR2*(T2−T1)+KR1*(T1−T0)+KR0*T0

X=TIME−TT

IF (X.LE.T0) IT3=KR0*CH0*X

IF (X.GT.T0.AND.X.LE.T1) IT3=KR1*CH1*(X−T0)+KR0*CH0*T0

IF (X.GT.T1.AND.X.LE.T2) THEN

IT3=KR2*CH2*(X−T1)+KR1*CH1*(T1−T0)+KR0*CH0*T0

ENDIF

IF (X.GT.T2) THEN

IT3=KR0*CH0*(X−T2)+KR2*CH2*(T2−T1)+KR1*CH1*(T1−T0)+KR0*CH0*T0

ENDIF

X=TIME−TR

IF (X.LE.T0) IT4=KR0*CH0*X

IF (X.GT.T0.AND.X.LE.T1) IT4=KR1*CH1*(X−T0)+KR0*CH0*T0

IF (X.GT.T1.AND.X.LE.T2) THEN

IT4=KR2*CH2*(X−T1)+KR1*CH1*(T1−T0)+KR0*CH0*T0

ENDIF

IF (X.GT.T2) THEN

IT4=KR0*CH0*(X−T2)+KR2*CH2*(T2−T1)+KR1*CH1*(T1−T0)+KR0*CH0*T0

ENDIF

R=IT1−IT2+IT3−IT4

RB=IT1−KR0*TIME+RBC0

IPRED=0

IF(CMT.EQ.1) IPRED=RB+ERR(1)

IF(CMT.EQ.2) IPRED=R+ERR(2)

Y = IPRED

IRES = DV − IPRED

$THETA

(0,1.5,5) ;T0

(0,7.0 ,20) ;DT1

(0,2,20) ;DT

42 FIX ;DT2

(0,0.04, 0.1) ;DKR1

(0,0.01,0.05) ;DKR2

$OMEGA 0.0 FIX

$SIGMA

0.01 ; RBC

0.01 ; RET

$ESTIMATION NSIGDIG=3 MAX=999 PRINT=1 NOABORT POSTHOC METHOD=1

$COV PRINT=E

$TABLE ID TIME CMT IPRED DOSE RET RBC

NOPRINT

FILE=C:\1034.txt

#ID

TIME

CMT

MDV

DV

RET

RBC

DOSE

1034

0

1

0

4.925

0.079

4.925

160

1034

0

2

0

0.079

0.079

4.925

160

1034

2

1

0

5.38

0.126

5.38

160

1034

2

2

0

0.126

0.126

5.38

160

1034

3

1

0

5.59

0.149

5.59

160

1034

3

2

0

0.149

0.149

5.59

160

1034

4

1

0

5.49

0.189

5.49

160

1034

4

2

0

0.189

0.189

5.49

160

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krzyzanski, W., Perez-Ruixo, J.J. An Assessment of Recombinant Human Erythropoietin Effect on Reticulocyte Production Rate and Lifespan Distribution in Healthy Subjects. Pharm Res 24, 758–772 (2007). https://doi.org/10.1007/s11095-006-9195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9195-y

Key words

Navigation