Skip to main content
Log in

Atmospheric-Pressure Plasma Reduction of Metal Cation-Containing Polymer Films to Produce Electrically Conductive Nanocomposites by an Electrodiffusion Mechanism

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

We describe an atmospheric-pressure plasma process for the reduction of metal cation-containing polymer films to form electrically conductive patterns. Thin films of poly(acrylic) acid (PAA) containing silver ions (Ag+) were prepared by mixing the polymer with silver nitrate (AgNO3) in solution to produce a cross-linked precipitate, homogenizing, and depositing onto a substrate by doctor’s blade. Exposing the Ag–PAA films to a scanning microplasma resulted in reduction of the bulk dispersed Ag+ in a desired pattern at the film surface. The processed films were characterized by scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis, and current–voltage measurements. The resistances of the patterned features were found to depend on the thickness of the films, the microplasma scan rate, residual solvent in the film, and electric field created between the microplasma and the substrate. Together these results show that the formation of conductive features occurs via an electrodiffusion process where Ag+ diffuses from the film bulk to the surface to be reduced by the microplasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhu X, Huo PP, Zhang YP, Liu CJ (2006) Ind Eng Chem Res 45(25):8604–8609

    Article  CAS  Google Scholar 

  2. Crowther JM, Badyal JPS (1998) Adv Mater 10(5):407–411

    Article  CAS  Google Scholar 

  3. Bromberg V, Ma S, Egittob FD, Singler TJ (2013) J Mater Chem C 1:6842–6849

    Article  CAS  Google Scholar 

  4. Zou JJ, Zhang YP, Liu CJ (2006) Langmuir 22(26):11388–11394

    Article  CAS  Google Scholar 

  5. Crowther JM, Badyal JPS (2012) Aust J Chem 65:1139–1144

    Article  CAS  Google Scholar 

  6. Yu Y, Li Y, Pan Y, Liu CJ (2012) Nanoscale Res Lett 7(1):234–238

    Article  Google Scholar 

  7. Fei X, Kuroda SI, Zhang G, Mori T, Hosoi K (2014) Key Eng Mater 596:60–64

    Article  CAS  Google Scholar 

  8. Lee SW, Liang D, Gao XPA, Sankaran RM (2011) Adv Funct Mater 21(11):2155–2161

    Article  CAS  Google Scholar 

  9. Ghosh S, Yang R, Kaumeyer M, Zorman CA, Rowan SJ, Feng PXL, Sankaran RM (2014) ACS Appl Mater Interfaces 6:3099–3104

    Article  CAS  Google Scholar 

  10. Zou J, Zhang Y, Liu CJ (2006) Langmuir 22(26):11388–11394

    Article  CAS  Google Scholar 

  11. Lahav M, Narovlyansky M, Winkleman A, Perez-Castillejos R, Weiss EA, Whitesides GM (2006) Adv Mater 18(23):3174–3178

    Article  CAS  Google Scholar 

  12. Winkleman A, Perez-Castillejos R, Lahav M, Narovlyansky M, Rodriguez LNJ, Whitesides GM (2006) Soft Mater 3:108–116

    Article  Google Scholar 

  13. Ahn BY, Walker SB, Slimmer SC, Russo A, Gupta A, Kranz S, Duoss EB, Malkowski TF, Lewis JA (2011) JoVE 58:3189

    Google Scholar 

  14. Sankaran RM, Giapis KP (2002) J Appl Phys 92:2406–2411

    Article  CAS  Google Scholar 

  15. Machin D, Rogers CE (1972) Macromol Chem Phys 155(1):269–281

    Article  CAS  Google Scholar 

  16. Cárdenas G, Muñoz C, Carbacho H (2000) Eur Polym J 36(6):1091–1099

    Article  Google Scholar 

  17. Stern KH (1972) J Phys Chem Ref Data 1(3):747

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Science Foundation under Grant No. SNM-1246715 for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghosh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Ostrowski, E., Yang, R. et al. Atmospheric-Pressure Plasma Reduction of Metal Cation-Containing Polymer Films to Produce Electrically Conductive Nanocomposites by an Electrodiffusion Mechanism. Plasma Chem Plasma Process 36, 295–307 (2016). https://doi.org/10.1007/s11090-015-9665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9665-2

Keywords

Navigation