Skip to main content
Log in

Study of Microwave Torch Plasmachemical Synthesis of Iron Oxide Nanoparticles Focused on the Analysis of Phase Composition

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This work presents the results obtained on the single-step route towards the synthesis of iron oxide nanoparticles in a microwave plasma torch. The torch is supplied by 660 sccm of Ar mixed with 1 sccm of Fe(CO)5 and a variable amount of O2. The influence of oxygen addition on the phase composition of the synthesized powder was studied. Magnetite and maghemite phases could not be distinguished using the standard X-ray diffraction (XRD) analysis. Therefore, a combined XRD and Raman spectra analysis had to be applied, which is based on fitting of selected diffraction peaks and spectral features. According to XRD and Raman spectroscopy, the powder synthesized from Ar/Fe(CO)5 consisted about 50 % of magnetite, Fe3O4, the rest being α-Fe and FeO. An increase in oxygen flow rate led to an increase in γ-Fe2O3 percentage, at the expense of α-Fe, FeO and Fe3O4. Almost pure γ-Fe2O3 was synthesized at oxygen flow rates 25–75× higher than the flow rate of Fe(CO)5. A further increase in the oxygen flow rate led to α-Fe2O3 and ε-Fe2O3 production. The distributions of nanoparticles’ (NPs) diameters were obtained using transmission electron microscopy (TEM) and dynamic light scattering (DLS). The mean diameter of the NPs measured by TEM was 13 nm while the DLS measurements led to the mean diameter of 12 nm. About 90 % of all particles had the diameter in the range of 5–21 nm but a few larger particles were observed in TEM micrographs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46

    Article  CAS  Google Scholar 

  2. Banerjee SS, Chen D-H (2009) A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release. Nanotechnology 20(18):185103

    Article  Google Scholar 

  3. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  4. Dormann J, Spinu L, Tronc E, Jolivet J, Lucari F, D’Orazio F (1998) Effect of interparticle interactions on the dynamical properties of gamma-Fe2O3 nanoparticles. J Magn Magn Mater 183:L255–L260

    Article  CAS  Google Scholar 

  5. Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7:1–37

    Article  CAS  Google Scholar 

  6. Lu A-H, Salabas EL, Schueth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244

    Article  CAS  Google Scholar 

  7. Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  CAS  Google Scholar 

  8. Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  9. Zboril R, Machala L, Mashlan M, Sharma V (2004) Iron(III) oxide nanoparticles in the thermally induced oxidative decomposition of prussian blue, Fe(4)[Fe(CN)(6)](3). Cryst Growth Des 4:1317–1325

    Article  CAS  Google Scholar 

  10. Tronc E, Chaneac C, Jolivet J (1998) Structural and magnetic characterization of epsilon-Fe2O3. J Solid State Chem 139:93–104

    Article  CAS  Google Scholar 

  11. Jin J, Ohkoshi S, Hashimoto K (2004) Giant coercive field of nanometer-sized iron oxide. Adv Mater 16:48–51

    Article  CAS  Google Scholar 

  12. Namai A, Yoshikiyo M, Yamada K, Sakurai S, Goto T, Yoshida T, Miyazaki T, Nakajima M, Suemoto T, Tokoro H, Ohkoshi S-I (2012) Hard magnetic ferrite with a gigantic coercivity and high frequency millimetre wave rotation. Nat Commun 3:1035

    Article  Google Scholar 

  13. Tseng Y-C, Souza-Neto NM, Haskel D, Gich M, Frontera C, Roig A, van Veenendaal M, Nogues J (2009) Nonzero orbital moment in high coercivity epsilon-Fe2O3 and low-temperature collapse of the magnetocrystalline anisotropy. Phys Rev B 79:094404-1–094404-6

    Google Scholar 

  14. Kelm K, Mader W (2005) Synthesis and structural analysis of epsilon-Fe2O3. Z Anorg Allg Chem 631(12):2383–2389

    Article  CAS  Google Scholar 

  15. Kim W, Suh C-Y, Cho S-W, Roh K-M, Kwon H, Song K, Shon I-J (2012) A new method for the identification and quantification of magnetite and maghemite mixture using conventional X-ray diffraction technique. Talanta 94(0):348–352

    Article  CAS  Google Scholar 

  16. Makovec D, Campelj S, Bele M, Maver U, Zorko M, Drofenik M, Jamnik J, Gaberscek M (2009) Nanocomposites containing embedded superparamagnetic iron oxide nanoparticles and rhodamine 6G. Colloids Surf A Physicochem Eng Asp 334:74–79

    Article  CAS  Google Scholar 

  17. Woo K, Hong J, Choi S, Lee H, Ahn J, Kim C, Lee S (2004) Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater 16:2814–2818

    Article  CAS  Google Scholar 

  18. Balasubramanian S (1999) Synthesis, spectral studies, spin cross-over in mixed ligand complexes of iron(II) and the influence of solvent on magnetic behaviour. Synth React Inorg Met Org Chem 29:377–394

    Article  CAS  Google Scholar 

  19. Can MM, Ozcan S, Ceylan A, Firat T (2010) Effect of milling time on the synthesis of magnetite nanoparticles by wet milling. Mater Sci Eng B Adv Funct Solid State Mater 172:72–75

    Article  CAS  Google Scholar 

  20. Muerbe J, Rechtenbach A, Toepfer J (2008) Synthesis and physical characterization of magnetite nanoparticles for biomedical applications. Mater Chem Phys 110:426–433

    Article  CAS  Google Scholar 

  21. Kuivila C, Butt B, Stair P (1988) Cahracterization of surface species on iron synthesis catalysts by X-ray photoelectron-spectroscopy. Appl Surf Sci 32:99–121

    Article  CAS  Google Scholar 

  22. Darezereshki E, Ranjbar M, Bakhtiari F (2010) One-step synthesis of maghemite (γ-fe2o3) nano-particles by wet chemical method. J Alloy Compd 502(1):257–260

    Article  CAS  Google Scholar 

  23. kang Sun Y, Ma M, Zhang Y, Gu N (2004) Synthesis of nanometer-size maghemite particles from magnetite. Colloids Surf A Physicochem Eng Asp 245(13):15–19

    Google Scholar 

  24. Vidal-Vidal J, Rivas J, López-Quintela M (2006) Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids Surf A Physicochem Eng Asp 288(13):44–51

    Article  CAS  Google Scholar 

  25. Gupta A, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  26. Hao Y, Teja A (2003) Continuous hydrothermal crystallization of alpha-Fe2O3 and Co3O4 nanoparticles. J Mater Res 18:415–422

    Article  CAS  Google Scholar 

  27. Sue K, Suzuki M, Arai K, Ohashi T, Ura H, Matsui K, Hakuta Y, Hayashi H, Watanabe M, Hiaki T (2006) Size-controlled synthesis of metal oxide nanoparticles with a flow-through supercritical water method. Green Chem 8(7):634–638

    Article  CAS  Google Scholar 

  28. Janzen C, Roth P (2001) Formation and characteristics of Fe2O3 nano-particles in doped low pressure H2/O2/Ar flames. Combust Flame 125:1150–1161

    Article  CAS  Google Scholar 

  29. Li D, Teoh WY, Selomulya C, Woodward RC, Munroe P, Amal R (2007) Insight into microstructural and magnetic properties of flame-made gamma-Fe2O3 nanoparticles. J Mater Chem 17(46):4876–4884

    Article  CAS  Google Scholar 

  30. Strobel R, Pratsinis SE (2009) Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv Powder Technol 20(2):190–194

    Article  CAS  Google Scholar 

  31. Pierson H (1999) Handbook of chemical vapor deposition: principles, technology and applications. Publications/William Andrew Noyes Publishing, New York

  32. Mathur S, Barth S, Werner U, Hernandez-Ramirez F, Romano-Rodriguez A (2008) Chemical vapor growth of one-dimensional magnetite nanostructures. Adv Mater 20:1550–1554

    Article  CAS  Google Scholar 

  33. Yoshida T, Akashi K (1981) Preparation of ultrafine iron particles using an rf plasma. Trans Jpn Inst Met 22(6):371–378

    CAS  Google Scholar 

  34. Girshick S, Chiu C-P, Muno R, Wu C, Yang L, Singh S, McMurry P (1993) Thermal plasma synthesis of ultrafine iron particles. J Aerosol Sci 24(3):367–382

    Article  CAS  Google Scholar 

  35. Kouprine A, Gitzhofer F, Boulos M, Veres T (2006) Synthesis of ferromagnetic nanopowders from iron pentacarbonyl in capacitively coupled rf plasma. Carbon 44(13):2593–2601

    Article  CAS  Google Scholar 

  36. Panchal V, Neergat M, Bhandarkar U (2011) Synthesis and characterization of carbon coated nanoparticles produced by a continuous low-pressure plasma process. J Nanopart Res 13:3825–3833

    Article  CAS  Google Scholar 

  37. Panchal V, Lahoti G, Bhandarkar U, Neergat M (2011) The effects of process parameters on yield and properties of iron nanoparticles from ferrocene in a low-pressure plasma. J Phys D Appl Phys 44:345205

    Article  Google Scholar 

  38. Chou C, Phillips J (1992) Plasma produciton of metallic nanoparticles. J Mater Res 7:2107–2113

    Article  CAS  Google Scholar 

  39. Vollath D, Szabo D, Taylor R, Willis J, Sickafus K (1995) Synthesis and properties of nanocrystalline superparamagnetic gamma-Fe2O3. Nanostruct Mat 6(5–8):941–944

    Article  Google Scholar 

  40. Vollath D, Szabo D, Taylor R, Willis J (1997) Synthesis and magnetic properties of nanostructured maghemite. J Mater Res 12:2175–2182

    Article  CAS  Google Scholar 

  41. Kalyanaraman R, Yoo S, Krupashankara M, Sudarshan T, Dowding R (1998) Synthesis and consolidation of iron nanopowders. Nanostruct Mater 10(8):1379–1392

    Article  CAS  Google Scholar 

  42. Li S-Z, Hong YC, Uhm HS, Li Z-K (2004) Synthesis of nanocrystalline iron oxide particles by microwave plasma jet at atmospheric pressure. Jpn J Appl Phys 43(11A):7714–7717

    Article  CAS  Google Scholar 

  43. Bica I (1999) Nanoparticle production by plasma. Mater Sci Eng B Adv Funct Solid State Mater 68(1):5–9

    Article  Google Scholar 

  44. Banerjee I, Khollam Y, Balasubramanian C, Pasricha R, Bakare P, Patil K, Das A, Bhoraskar S (2006) Preparation of gamma-Fe2O3 nanoparticles using DC thermal arc-plasma route, their characterization and magnetic properties. Scr Mater 54:1235–1240

    Article  CAS  Google Scholar 

  45. Chazelas C, Coudert J, Jarrige J, Fauchais P (2006) Synthesis of ultra fine particles by plasma transferred arc: influence of anode material on particle properties. J Eur Ceram Soc 26(16):3499–3507

    Article  CAS  Google Scholar 

  46. Barankin MD, Creyghton Y, Schmidt-Ott A (2006) Synthesis of nanoparticles in an atmospheric pressure glow discharge. J Nanopart Res 8:511–517

    Article  CAS  Google Scholar 

  47. Synek P, Jašek O, Zajíčková L, David B, Kudrle V, Pizúrová N (2011) Plasmachemical synthesis of maghemite nanoparticles in atmospheric pressure microwave torch. Mater Lett 65:982–984

    Article  CAS  Google Scholar 

  48. Cornell R, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurences and uses, 2nd edn. Wiley, Hoboken, NJ

    Book  Google Scholar 

  49. Qi WH, Wang MP, Su YC (2002) Size effect on the lattice parameters of nanoparticles. J Mater Sci Lett 21:877–878. doi:10.1023/A:1015778729898

    Article  CAS  Google Scholar 

  50. Qi W, Wang M (2005) Size and shape dependent lattice parameters of metallic nanoparticles. J Nanopart Res 7:51–57

    Article  CAS  Google Scholar 

  51. de Faria DLA, Venâncio Silva S, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28(11):873–878

    Article  Google Scholar 

  52. Chourpa I, Douziech-Eyrolles L, Ngaboni-Okassa L, Fouquenet J, Cohen-Jonathan S, Souce M, Marchais H, Dubois P (2005) Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 130(10):1395–1403

    Article  CAS  Google Scholar 

  53. Wei X, Wei Z, Zhang L, Liu Y, He D (2011) Highly water-soluble nanocrystal powders of magnetite and maghemite coated with gluconic acid: preparation, structure characterization, and surface coordination. J Colloid Interface Sci 354(1):76–81

    Article  CAS  Google Scholar 

  54. Jubb AM, Allen HC (2010) Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl Mater Interfaces 2(10):2804–2812

    Article  CAS  Google Scholar 

  55. Chamritski I, Burns G (2005) Infrared and raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. J Phys Chem B 109(11):4965–4968

    Article  CAS  Google Scholar 

  56. Brandt NN, Brovko OO, Chikishev AY, Paraschuk OD (2006) Optimization of the rolling-circle filter for Raman background subtraction. Appl Spectrosc 60:288–293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the projects ‘CEITEC—Central European Institute of Technology’ (CZ.1.05/1.1.00/02.0068) from European Regional Development Fund, by the project P205/10/1374 of the Czech Science Foundation and ‘Employment of Newly Graduated Doctors of Science for Scientific Excellence’ (CZ.1.07/2.3.00/30.0009) co-financed from European Social Fund and the state budget of the Czech Republic. The authors would like to thank Dr. Dušan Hemzal for Raman spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Synek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Synek, P., Jašek, O. & Zajíčková, L. Study of Microwave Torch Plasmachemical Synthesis of Iron Oxide Nanoparticles Focused on the Analysis of Phase Composition. Plasma Chem Plasma Process 34, 327–341 (2014). https://doi.org/10.1007/s11090-014-9520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9520-x

Keywords

Navigation