Skip to main content
Log in

Plasma Treatment of Glass Surfaces Using Diffuse Coplanar Surface Barrier Discharge in Ambient Air

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

We report a study on the treatment of flat glass surfaces by ambient air atmospheric pressure plasma, generated by a dielectric barrier discharge of coplanar arrangement of the electrode system—the diffuse coplanar surface barrier discharge (DCSBD). The plasma treatment of glass was performed in both static and dynamic modes. With respect to wettability of the glass surface, treatment in static mode resulted in non-uniform surface properties, whereas dynamic mode provided a fully uniform treatment. A water contact angle measurement was used to determine the efficiency of plasma treatments in dynamic mode and also to investigate a hydrophobic recovery of plasma treated glass surfaces. The X-ray photoelectron spectroscopy measurements showed a decrease of overall carbon concentrations after plasma treatment. A deconvolution of C1s peak, showed that a short plasma treatment led to decrease of C–C bonds concentration and increases of C–O and O–C=O bond concentrations. An enhancing influence of the glass surface itself on DCSBD diffuse plasma was observed and explained by different discharge onsets and changes in the electric field distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Axinte E (2011) Mater Des 32:1717–1732

    Article  CAS  Google Scholar 

  2. Inoue T (2003) Energy Build 35:463–471

    Article  Google Scholar 

  3. Mohelnikova J (2009) Constr Build Mater 23:1993–1998

    Article  Google Scholar 

  4. Cras J, Rowe-Taitt C, Nivens D, Ligler F (1999) Biosens Bioelectron 14:683–688

    Article  CAS  Google Scholar 

  5. Lim SW (2003) Jpn J Appl Phys 42:5002–5009

    Article  CAS  Google Scholar 

  6. Angermann H, Henrion W, Rebien M (2004) Appl Surf Sci 235:322–339

    Article  CAS  Google Scholar 

  7. Han Y, Mayer D, Offenhausser A, Ingebrandt S (2006) Thin Solid Films 510:175–180

    Article  CAS  Google Scholar 

  8. Bell KL, Dalgarno A, Kingston AE (1968) J Phys B At Mol Opt 1:18–22

    Article  CAS  Google Scholar 

  9. Xu X (2001) Thin Solid Films 390:237–242

    Article  CAS  Google Scholar 

  10. Kogelschatz U, Eliasson B, Egli W (1999) Pure Appl Chem 71:1819–1828

    Article  CAS  Google Scholar 

  11. Gibalov V, Pietsch G (2000) J Phys D Appl Phys 33:2618–2636

    Article  CAS  Google Scholar 

  12. Iwasaki M, Matsudaira Y, Takeda K, Ito M, Miyamoto E, Yara T, Uehara T, Hori M (2008) J Appl Phys 103:023303-1–023303-7

    Article  Google Scholar 

  13. Šimor M, Ráheľ J, Vojtek P, Černák M, Brablec A (2002) Appl Phys Lett 81:2716–2718

    Article  Google Scholar 

  14. Zhu AM, Nie LH, Wu QH, Zhang XL, Yang XF, Xu Y, Shi C (2007) Chem Vap Depos 13:141–144

    Article  CAS  Google Scholar 

  15. Masuda S, Akutsu K, Kuroda M, Awatsu Y, Shibuya Y (1988) IEEE T Ind Appl 24:223–231

    Article  CAS  Google Scholar 

  16. Langmuir I (1918) J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  17. Paynter R (1999) Surf Interface Anal 27:103–113

    Article  CAS  Google Scholar 

  18. Buček A, Homola T, Aranyosiová M, Velič D, Plecenik T, Havel J, Sťahel P, Zahoranová A (2008) Chem Listy 102:1459–1462

    Google Scholar 

  19. Takahashi H, Sato K, Sakata S, Okada T (1995) J Electrostat 35:309–322

    Article  CAS  Google Scholar 

  20. Ames D (2004) Surf Coat Tech 187:199–207

    Article  CAS  Google Scholar 

  21. Yamamoto T, Okubo M, Imai N, Mori Y (2004) Plasma Chem Plasma P 24:1–12

    Article  CAS  Google Scholar 

  22. Kondoh E, Asano T, Nakashima A, Komatu M (2000) J Vac Sci Technol, B 18:1276–1280

    Article  CAS  Google Scholar 

  23. Larson B, Helgren J, Manolache S, Lau A, Lagally M, Denes F (2005) Biosens Bioelectron 21:796–801

    Article  CAS  Google Scholar 

  24. Černák M (2007) Faculty of mathematics, physics and informatics. Comenius University, Slovakia: Patent WO 2007/142612 A1, Slovakia

  25. Černák M, Černáková Ľ, Hudec I, Kováčik D, Zahoranová A (2009) Eur Phys J Appl Phys 47:22806-1–22806-6

    Google Scholar 

  26. Hoder T, Šíra M, Kozlov KV, Wagner HE (2008) J Phys D Appl Phys 41:035212-1–035212-9

    Article  Google Scholar 

  27. Homola T, Matoušek M, Hergelová B, Kormunda M, Wu YLL, Černák M (2012) Polym Degrad Stab 97:886–892

    Article  CAS  Google Scholar 

  28. Paschen F (1889) Ann Phys 273:69–96

    Article  Google Scholar 

  29. Loeb LB, Meek JM (1940) J Appl Phys 11:438–447

    Article  CAS  Google Scholar 

  30. Loeb LB, Meek JM (1940) J Appl Phys 11:459–474

    Article  Google Scholar 

  31. Raizer YP (1991) Gas discharge physics. Springer, Berlin

    Book  Google Scholar 

  32. Massines F, Gherardi N, Naudé N, Ségur P (2009) Eur Phys J Appl Phys 47:22805-1–22805-10

    Article  Google Scholar 

  33. Brauer I, Punset C, Purwins HG, Boeuf JP (1999) J Appl Phys 85:7569–7572

    Article  CAS  Google Scholar 

  34. Chen F, Von Goeler S (2006) Introduction to plasma physics and controlled fusion, vol 1: Plasma physics. Springer

  35. Homola T, Matoušek J, Medvecká V, Zahoranová A, Kormunda M, Kováčik D, Černák M (2012) Appl Surf Sci 258:7135–7139

    Article  CAS  Google Scholar 

  36. van Oss C, Chaudhury MK, Good RJ (1988) Chem Rev 88:927–941

    Article  Google Scholar 

  37. Pianoforte K (2011) The industrial coatings market: industrial coatings manufacturers express optimism for the coming year. Coatings world. http://www.coatingsworld.com/issues/2011-06/view_features/the-industrial-coatings-market/. Accessed 2011

  38. Homola T, Buček A, Zahoranová A, Černák M (2007) 16th annual conference of Doctoral students WDS ‘07—part II: physics of plasma and ionized media. Prague Matfyzpress 124–128

  39. Morent R, De Geyter N, Leys C, Gengembre L, Payen E (2007) Surf Coat Tech 201:7847–7854

    Article  CAS  Google Scholar 

  40. Kormunda M, Homola T, Matoušek J, Kováčik D, Černák M, Pavlík J (2012) Polym Degrad Stab 97:547–553

    Article  CAS  Google Scholar 

  41. Pykonen M, Sundqvist H, Kaukoniemi O, Tuominen M, Lahti J, Fardim P, Toivakka M (2008) Surf Coat Tech 202:3777–3786

    Article  Google Scholar 

  42. Lin JW, Chang HC (2011) Nucl Instrum Meth B 269:1801–1808

    Article  CAS  Google Scholar 

  43. Prysiazhnyi V, Cernak M (2012) Thin Solid Films 520:6561–6565

    Article  CAS  Google Scholar 

  44. Dupont-Gillain CC, Adriaensen Y, Derclaye S, Rouxhet PG (2000) Langmuir 16:8194–8200

    Article  CAS  Google Scholar 

  45. De Geyter N, Morent R, Leys C (2008) Nucl Instrum Meth B 266:3086–3090

    Article  Google Scholar 

  46. Prysiazhnyi V, Zaporojchenko V, Kersten H, Černák M (2012) Appl Surf Sci 258:5467–5471

    Article  CAS  Google Scholar 

  47. Homola T, Matoušek J, Hergelová B, Kormunda M, Wu LY, Černák M (2012) Polym Degrad Stab 97:2249–2254

    Article  CAS  Google Scholar 

  48. Wang C, He X (2006) Appl Surf Sci 252:8348–8351

    Article  CAS  Google Scholar 

  49. Crist BV (2004) Handbook of monochromatic XPS spectra. XPS International LLC, USA

    Google Scholar 

  50. Takeda S, Yamamoto K, Hayasaka Y, Matsumoto K (1999) J Non Cryst Solids 249:41–46

    Article  CAS  Google Scholar 

  51. So L, Ng N, Bilek M, Pigram PJ, Brack N (2006) Surf Interface Anal 38:648–651

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the project R&D Centre for Low-Cost Plasma and Nanotechnology Surface Modifications—CZ.1.05/2.1.00/03.0086 funding by the European Development Fund, the Slovak Research and Development Agency, Project. No. APVV-0491-07, and by the Czech Science Foundation (GACR) project GAP205/10/0979.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Homola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homola, T., Matoušek, J., Kormunda, M. et al. Plasma Treatment of Glass Surfaces Using Diffuse Coplanar Surface Barrier Discharge in Ambient Air. Plasma Chem Plasma Process 33, 881–894 (2013). https://doi.org/10.1007/s11090-013-9467-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9467-3

Keywords

Navigation