Skip to main content
Log in

Modelling High Temperature Oxidation in Iron–Chromium Systems: Combined Kinetic and Thermodynamic Calculation of the Long-Term Behaviour and Experimental Verification

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation of two industrial steels with different chromium content (9 and 12 wt%), oxidised for up to 120 h at 750 °C in air has been investigated experimentally and by means of two-dimensional theoretical methods. The numerical model approach, which we call Applied Simulations of Thermodynamic Reactions and Interphase Diffusion (ASTRID), links the thermodynamic library ChemApp (GTT-Technologies, Germany) to the numerical programme COMSOL (COMSOL Inc., USA). This allows convenient implementations of complex geometries and to probe the oxidation behaviour in “real-life” microstructures under given conditions. Satisfying agreements with experimental findings for the total oxidation depth and local oxide composition have been obtained. Enhancements in the computing speed, as compared to the initial programme InCorr, enable a better resolution of the spatial phase distribution and allow the consideration of different diffusion coefficients corresponding to the newly formed (oxide) phases within the same calculation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Young, High Temperature Oxidation and Corrosion of Metals, 1st edn. (Elsevier, Oxford, 2008).

    Google Scholar 

  2. P. Kofstad, High Temperature Oxidation of Metals (John Wiley & Sons, New York, 1966).

    Google Scholar 

  3. W. J. Quadakkers, J. Żurek, and M. Hänsel, Journal of Metals 61, 44 (2009).

    CAS  Google Scholar 

  4. V. B. Trindade, U. Krupp, and H. J. Christ, Journal of Materials Engineering and Performance 17, 915 (2008).

    Article  CAS  Google Scholar 

  5. I. Parezanović and M. Spiegel, Surface Engineering 20, 285 (2004).

    Article  Google Scholar 

  6. S. Burk, B. Gorr, V. B. Trindade, and H. J. Christ, Oxidation of Metals 73, 163 (2010).

    Article  CAS  Google Scholar 

  7. A. N. Hansson, J. H. Hattel, K. V. Dahl, and M. A. J. Somers, Modelling and Simulation in Materials Science and Engineering 17, 035009 (2009).

    Article  Google Scholar 

  8. K. Bongartz, W. J. Quadakkers, R. Schulten, and H. Nickel, Metallurgical Transactions A 20, 1021 (1989).

    Article  Google Scholar 

  9. C. Gugenberger, R. Spatschek, and K. Kassner, Physical Review E 78, 016703 (2008).

    Article  Google Scholar 

  10. U. Krupp and H. J. Christ, Journal of Phase Equilibria and Diffusion 26, 487 (2005).

    CAS  Google Scholar 

  11. J. O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, CALPHAD 26, 273 (2002).

    Article  CAS  Google Scholar 

  12. I. Kaur, Y. Mishin, and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion, 3rd edn. (John Wiley & Sons LTD, New York, 1995).

    Google Scholar 

  13. H. Mehrer, Landolt Börnstein—Numerical Data and Functional Relationships in Science and Technology: Group III, Vol. 26 (Springer, Berlin, 1990).

    Google Scholar 

  14. S. Yamaguchi and M. Someno, Transactions of the Japan Institute of Metals 23, 259 (1982).

    CAS  Google Scholar 

  15. A. G. Crouch and J. Robertson, Acta Metallurgica et Materialia 38, 2567 (1990).

    Article  CAS  Google Scholar 

  16. W. C. Hagel, Journal of the American Ceramic Society 48, 70 (1965).

    Article  CAS  Google Scholar 

  17. L. Himmel, R. T. Mehl, and C. E. Birchenall, Journal of Metals 5, 827 (1953).

    CAS  Google Scholar 

  18. W. C. Hagel and A. U. Seybolt, Journal of the Electrochemical Society 108, 1146 (1961).

    Article  CAS  Google Scholar 

  19. A. C. S. Sabioni, A. M. Huntz, F. Millot, and C. Monty, Philosophical Magazine A 66, 351 (1992).

    Article  CAS  Google Scholar 

  20. K. Kuroda, P. A. Labun, G. Welsch, and T. E. Mitchell, Oxidation of Metals 19, 117 (1983).

    Article  CAS  Google Scholar 

  21. M. Fukumoto, S. Maeda, S. Hayashi, and T. Narita, Oxidation of Metals 55, 401 (2001).

    Article  CAS  Google Scholar 

  22. G. R. Wallwork and A. Z. Hed, Oxidation of Metals 3, 171 (1971).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors M. Auinger and M. Rohwerder gratefully acknowledge the funding by the Christian Doppler Forschungsgesellschaft and the voestalpine Stahl GmbH as part of the project “Diffusion and Segregation Mechanisms during Production of High Strength Steel Sheet”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Auinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auinger, M., Naraparaju, R., Christ, HJ. et al. Modelling High Temperature Oxidation in Iron–Chromium Systems: Combined Kinetic and Thermodynamic Calculation of the Long-Term Behaviour and Experimental Verification. Oxid Met 76, 247–258 (2011). https://doi.org/10.1007/s11085-011-9252-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-011-9252-8

Keywords

Navigation