, Volume 41, Issue 1, pp 3-16
Date: 21 Apr 2010

The Role of Natural Selection in the Origin of Life

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

It is commonly accepted among origin-of-life scientists that the emergence of life was an evolutionary process involving at one stage or other the working of natural selection. Researchers disagree, however, on the nature of the chemical infrastructure that could have formed prebiotically, enabling the evolutionary process. The division of the origin-of-life research community into ‘geneticists’ and ‘metabolists’ usually revolves around the issue whether the first to arise prebiotically was a genetic polymer or a primitive metabolic system. In this paper I offer an alternative classification based on the attitude to the onset of natural selection. From this perspective I add to the conventional division between gene-first and metabolism-first groups a position I call “preparatory metabolism”. By this line of thought, an RNA or an RNA-like polymer could not have emerged prebiotically. Nevertheless, the onset of natural selection had to wait until such a polymer had arised. This paper examines the RNA-first, RNA-later, metabolism-first and preparatory-metabolism scenarios, assessing the weaknesses and strengths of each. I conclude that despite the recent theoretical advances in all these lines of research, and despite experimental breakthroughs, especially in overcoming several RNA-first hurdles, none of the examined paradigms has yet attained decisive experimental support. Demonstrating the evolvability of a potentially prebiotic infrastructure, whether genetic or metabolic, is a most serious challenge. So is the experimental demonstration of the emergence of such an infrastructure under prebiotic conditions. The current agenda before origin-of-life researchers of all stripes and colors is the search for the experimental means to tackle all these difficulties.