Skip to main content
Log in

Practical SARG04 quantum key distribution

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We have presented a method to estimate parameters of the decoy state method based on one decoy state protocol for SARG04. This method has given lower bound of the fraction of single-photon counts (y 1), the fraction of two-photon counts (y 2), the upper bound QBER of single-photon pulses (e 1), the upper bound QBER of two-photon pulses (e 2), and the lower bound of key generation rate for both BB84 and SARG04. The numerical simulation has shown that the fiber based QKD and free space QKD systems using the proposed method for BB84 are able to achieve both a higher secret key rate and greater secure distance than that of SARG04. Also, it is shown that bidirectional ground to satellite and inter-satellite communications are possible with our protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali S., Wahiddin M.R.B.: Fiber and free-space practical decoy state QKD for both BB84 and SARG04 protocols. Eur. Phys. J. D 60, 405–410 (2010)

    Article  ADS  Google Scholar 

  • Aviv D.G.: Laser Space Communications. Artech House, London (2006)

    Google Scholar 

  • Branciard C.: Security of two quantum cryptography protocols using the same four qubit states. Phys. Rev. A 72, 032301–032317 (2005)

    Article  ADS  Google Scholar 

  • Cai Q.-y., Tan Y.-g.: Photon-number-resolving decoy-state quantum key distribution. Phys. Rev. A 75, 449–455 (2007)

    Google Scholar 

  • Curty M. et al.: Passive decoy-state quantum key distribution with practical light sources. Phys. Rev. A 81, 022310–022324 (2010)

    Article  ADS  Google Scholar 

  • Elterman L.: Parameters for attenuation in atmospheric windows for fifteen wavelengths. Appl. Opt. 3(745), 745–749 (1964)

    Article  ADS  Google Scholar 

  • Fung C.-H., Tamaki K., Lo H.-K.: On the performance of two protocols: SARG04 and BB84. Phys. Rev. A. 73, 012337–012356 (2006)

    Article  ADS  Google Scholar 

  • Gatenby P.V., Grant M.A.: Optical intersatellite links. Electron. Commun. Eng. J. 3(280), 280–288 (1991)

    Article  Google Scholar 

  • Gobby C., Yuan Z.L., Shields A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)

    Article  ADS  Google Scholar 

  • Gottesman D., Lo H.-K., Lütkenhaus N., Preskill J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4(325), 325–360 (2004)

    MathSciNet  MATH  Google Scholar 

  • Horikiri T., Kobayashi T.: Decoy state quantum key distribution with a photon number resolved heralded single photon source. Phys. Rev. A 73, 032331–032336 (2006)

    Article  ADS  Google Scholar 

  • Hwang W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901–057905 (2003)

    Article  ADS  Google Scholar 

  • Inamori H., Lütkenhaus N., Mayers D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41, 599–627 (2007)

    Article  ADS  Google Scholar 

  • Koashi M.: Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse. Phys. Rev. Lett. 93, 120501–120504 (2004)

    Article  ADS  Google Scholar 

  • Li J.-B., Fang X.-M.: Nonorthogonal decoy-state quantum key distribution. Chin. Phys. Lett. 23(4), 757–778 (2006)

    Google Scholar 

  • Ma X. et al.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005). doi:10.1103/PhysRevA.72.012326

    Article  ADS  Google Scholar 

  • Meyer-Scott E. et al.: How to implement decoy-state quantum key distribution for a satellite uplink with 50-dB channel loss. Phys. Rev. A 84, 062326–062333 (2011)

    Article  ADS  Google Scholar 

  • Mo X.-F. et al.: Faraday-Michelson system for quantum cryptography. Opt. Lett. 30, 2632–2634 (2005)

    Article  ADS  Google Scholar 

  • Peng C.-Z. et al.: Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505–010509 (2007)

    Article  ADS  Google Scholar 

  • Rosenberg D. et al.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503–010507 (2007)

    Article  ADS  Google Scholar 

  • Scarani V. et al.: Quantum cryptography protocols Robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901–057904 (2004)

    Article  ADS  Google Scholar 

  • Schmitt-Manderbach T. et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504–010508 (2007)

    Article  ADS  Google Scholar 

  • Shor P.W., Preskill J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(441), 441–444 (2000)

    Article  ADS  Google Scholar 

  • Tamaki K., Lo H.-K.: Unconditionally secure key distillation from multiphotons. Phys. Rev. A 73, 010302–010305(R) (2006)

    Article  ADS  Google Scholar 

  • Tan Y.G., Cai Q.Y.: Practical decoy state quantum key distribution with finite resource. Eur. Phys. J. D 56, 449–455 (2010)

    Article  ADS  Google Scholar 

  • Ursin R. et al.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007). doi:10.1038/nphys629

    Article  Google Scholar 

  • Wang X.-B.: Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Phys. Rev. A 72, 012322–012328 (2005)

    Article  ADS  Google Scholar 

  • Wang X.-B.: Decoy-state quantum key distribution with large random errors of light intensity. Phys. Rev. A 75, 052301–052309 (2007)

    Article  ADS  Google Scholar 

  • Wang Q., Wang X.-B., Guo G.-C.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. A 75, 012312–012317 (2007a)

    Article  ADS  Google Scholar 

  • Wang X.-B., Peng C.-Z., Pan J.-W.: Simple protocol for secure decoy-state quantum key distribution with a loosely controlled source. Appl. Phys. Lett. 90, 8587–8594 (2007)

    Google Scholar 

  • Yin Z.-Q., Han Z.-F., Sun F.-W., Guo G.-C.: Decoy state quantum key distribution with modified coherent state. Phys. Rev. A 76, 014304–014308 (2007)

    Article  ADS  Google Scholar 

  • Yin Z.-Q. et al.: Decoy states for quantum key distribution based on decoherence-free subspaces. Phys. Rev. A 77, 062326–062331 (2008)

    Article  ADS  Google Scholar 

  • Yuan Z.L., Sharpe A.W., Shields A.J.: Unconditionally secure one-way quantum key distribution using decoy pulses. Appl. Phys. Lett. 90, 8465–8471 (2007)

    Google Scholar 

  • Zhao, Yi, et al.: Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber. In: Proceedings of IEEE International Symposium on Information Theory, pp. 2094–2098 (2006)

  • Zhao Y. et al.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. Lett. 78, 042333–042337 (2008)

    ADS  Google Scholar 

  • Zhou Y.-y., Zhou X.-j.: SARG04 decoy-state quantum key distribution based on an unstable source. Optoelectron. Lett. 7(5), 389–393 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sellami Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, S., Mohammed, S., Chowdhury, M.S.H. et al. Practical SARG04 quantum key distribution. Opt Quant Electron 44, 471–482 (2012). https://doi.org/10.1007/s11082-012-9571-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-012-9571-2

Keywords

Navigation